Mycolactone, the amphiphilic macrolide toxin secreted by , plays a significant role in the pathology and manifestations of Buruli ulcer (BU). Consequently, it follows that the toxin is a suitable target for the development of diagnostics and therapeutics for this disease. Yet, several challenges have deterred such development.
View Article and Find Full Text PDFProtein-ligand conjugations are usually carried out in aqueous media in order to mimic the environment within which the conjugates will be used. In this work, we focus on the conjugation of amphiphilic variants of elastin-like polypeptide (ELP), short elastin (sEL), to poorly water-soluble compounds like OPPVs ( p-phenylenevinylene oligomers), triarylamines, and polypyridine-metal complexes. These conjugations are problematic when carried out in aqueous phase because hydrophobic ligands tend to avoid exposure to water, which in turn causes the ligand to self-aggregate and/or interact noncovalently with hydrophobic regions of the amphiphile.
View Article and Find Full Text PDFFunctionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g ), three times higher than that of the graphite anode (372 mAh g ).
View Article and Find Full Text PDFThe plasma membrane contains discrete nanometer-sized domains that are resistant to non-ionic detergents, and which are called detergent resistant membrane domains (DRMDs) or lipid rafts. Exposure of host cells to pathogenic bacteria has been shown to induce the re-distribution of specific host proteins between DRMDs and detergent soluble membranes, which leads to the initiation of cell signaling that enable pathogens to access host cells. DRMDs have been shown to play a role in the invasion of Brucella into host macrophages and the formation of replicative phagosomes called Brucella-containing vacuoles (BCVs).
View Article and Find Full Text PDFBackground: Single cell genomics has revolutionized microbial sequencing, but complete coverage of genomes in complex microbiomes is imperfect due to enormous variation in organismal abundance and amplification bias. Empirical methods that complement rapidly improving bioinformatic tools will improve characterization of microbiomes and facilitate better genome coverage for low abundance microbes.
Methods: We describe a new approach to sequencing individual species from microbiomes that combines antibody phage display against intact bacteria with fluorescence activated cell sorting (FACS).
From motility of simple protists to determining the handedness of complex vertebrates, highly conserved eukaryotic cilia and flagella are essential for the reproduction and survival of many biological organisms. Despite extensive studies, the exact mechanism by which individual components coordinate their activity to produce ciliary beating patterns remains unknown. We describe a novel approach toward studying ciliary beating.
View Article and Find Full Text PDFAnalytical capabilities to identify dyes associated with structurally robust wool fibers would critically assist crime-scene and explosion-scene forensics. Nondestructive separation of dyes from wool, removal of contaminants, and dye analysis by MALDI- or ESI-MS, were achieved in a single-pot, ionic liquid-based method. Ionic liquids (ILs) that readily denature the wool α-keratin structure have been identified and are conducive to small volume, high-throughput analysis for accelerated threat-response times.
View Article and Find Full Text PDFThe mechanism that drives the regular beating of individual cilia and flagella, as well as dense ciliary fields, remains unclear. We describe a minimal model system, composed of microtubules and molecular motors, which self-assemble into active bundles exhibiting beating patterns reminiscent of those found in eukaryotic cilia and flagella. These observations suggest that hundreds of molecular motors, acting within an elastic microtubule bundle, spontaneously synchronize their activity to generate large-scale oscillations.
View Article and Find Full Text PDFRoom temperature ionic liquids, or RTILs, based on tetraalkylphosphonium (PR(4)(+)) cations were used as the basis of a platform that enables separation of dyes from textiles, extraction of dyes from aqueous solution, and identification of the dyes by MALDI-MS in a single experimental step for forensic purposes. Ionic liquids were formed with PR(4)(+) cations and ferulate (FA), α-cyano-4-hydroxycinnamate (CHCA), and 2,5-dihydroxybenzoate (DHB) anions. The use of tetraalkylphosphonium-based ionic liquids in MALDI-MS allowed detection of small molecule dyes without addition of a traditional solid MALDI matrix.
View Article and Find Full Text PDFAggregates of reaction intermediates form during the early stages of aniline oxidative polymerization whenever the initial mole ratio of proton concentration to aniline monomer concentration is low ([H(+)](0)/[An](0)
We report the synthesis of a series of water-soluble, fluorescent, conjugated polymers via the Gilch reaction with an overall yield greater than 40%. The yield for the Gilch reaction decreases with the increase in the length of the side chain (ethylene glycol repeat units), presumably due to the steric effects inhibiting the linking of monomeric units. The hydrophilic side chain enhances the solubility of the polymer in water and concomitantly leads to a side-chain-dependent conformation and solvent-dependent quantum efficiency.
View Article and Find Full Text PDFThe biosynthesis of the 3,4-dihydroxybenzoate moieties of the siderophore petrobactin, produced by B. anthracis str. Sterne, was probed by isotopic feeding experiments in iron-deficient media with a mixture of unlabeled and D-[(13)C6]glucose at a ratio of 5:1 (w/w).
View Article and Find Full Text PDF