As the range of applications of organs-on-chips is broadening, the evaluation of aerosol-based therapies using a lung-on-a-chip model has become an attractive approach. Inhalation therapies are not only minimally invasive but also provide optimal pharmacokinetic conditions for drug absorption. As drug development evolves, it is likely that better screening through use of organs-on-chips can significantly save time and cost.
View Article and Find Full Text PDFMicromachines (Basel)
August 2019
Lung-on-a-chip (LoC) models hold the potential to rapidly change the landscape for pulmonary drug screening and therapy, giving patients more advanced and less invasive treatment options. Understanding the drug absorption in these microphysiological systems, modeling the lung-blood barrier is essential for increasing the role of the organ-on-a-chip technology in drug development. In this work, epithelial/endothelial barrier tissue interfaces were established in microfluidic bilayer devices and transwells, with porous membranes, for permeability characterization.
View Article and Find Full Text PDFWhole organ decellularization of porcine renal tissue and recellularization with a patient's own cells would potentially overcome immunorejection, which is one of the most significant problems with allogeneic kidney transplantation. However, there are obstacles to achieving this goal, including preservation of the decellularized extracellular matrix (ECM), identifying the proper cell types, and repopulating the ECM before transplantation. Freezing biological tissue is the best option to avoid spoilage; however, it may damage the structure of the tissue or disrupt cellular membranes through ice crystal formation.
View Article and Find Full Text PDF