Clarifying whether physiological sleep measures predict mortality could inform risk screening; however, such investigations should account for complex and potentially non-linear relationships among health risk factors. We aimed to establish the predictive utility of polysomnography (PSG)-assessed sleep measures for mortality using a novel permutation random forest (PRF) machine learning framework. Data collected from the years 1995 to present are from the Sleep Heart Health Study (SHHS; n = 5,734) and the Wisconsin Sleep Cohort Study (WSCS; n = 1,015), and include initial assessments of sleep and health, and up to 15 years of follow-up for all-cause mortality.
View Article and Find Full Text PDF