We present a graph-theory-based reformulation of all ONIOM-based molecular fragmentation methods. We discuss applications to (a) accurate post-Hartree-Fock AIMD that can be conducted at DFT cost for medium-sized systems, (b) hybrid DFT condensed-phase studies at the cost of pure density functionals, (c) reduced cost on-the-fly large basis gas-phase AIMD and condensed-phase studies, (d) post-Hartree-Fock-level potential surfaces at DFT cost to obtain quantum nuclear effects, and (e) novel transfer machine learning protocols derived from these measures. Additionally, in previous work, the unifying strategy discussed here has been used to construct new quantum computing algorithms.
View Article and Find Full Text PDFThe accurate and efficient study of the interactions of organic matter with the surface of water is critical to a wide range of applications. For example, environmental studies have found that acidic polyfluorinated alkyl substances, especially perfluorooctanoic acid (PFOA), have spread throughout the environment and bioaccumulate into human populations residing near contaminated watersheds, leading to many systemic maladies. Thus, the study of the interactions of PFOA with water surfaces became important for the mitigation of their activity as pollutants and threats to public health.
View Article and Find Full Text PDFThe accurate determination of chemical properties is known to have a critical impact on multiple fundamental chemical problems but is deeply hindered by the steep algebraic scaling of electron correlation calculations and the exponential scaling of quantum nuclear dynamics. With the advent of new quantum computing hardware and associated developments in creating new paradigms for quantum software, this avenue has been recognized as perhaps one way to address exponentially complex challenges in quantum chemistry and molecular dynamics. In this paper, we discuss a new approach to drastically reduce the quantum circuit depth (by several orders of magnitude) and help improve the accuracy in the quantum computation of electron correlation energies for large molecular systems.
View Article and Find Full Text PDFMolecular fragmentation methods have revolutionized quantum chemistry. Here, we use a graph-theoretically generated molecular fragmentation method, to obtain accurate and efficient representations for multidimensional potential energy surfaces and the quantum time-evolution operator, which plays a critical role in quantum chemical dynamics. In doing so, we find that the graph-theoretic fragmentation approach naturally reduces the potential portion of the time-evolution operator into a tensor network that contains a stream of coupled lower-dimensional propagation steps to potentially achieve quantum dynamics with reduced complexity.
View Article and Find Full Text PDFWe present a weighted-graph-theoretic approach to adaptively compute contributions from many-body approximations for smooth and accurate post-Hartree-Fock (pHF) molecular dynamics (AIMD) of highly fluxional chemical systems. This approach is ONIOM-like, where the full system is treated at a computationally feasible quality of treatment (density functional theory (DFT) for the size of systems considered in this publication), which is then improved through a perturbative correction that captures local many-body interactions up to a certain order within a higher level of theory (post-Hartree-Fock in this publication) described through graph-theoretic techniques. Due to the fluxional and dynamical nature of the systems studied here, these graphical representations evolve during dynamics.
View Article and Find Full Text PDFWe present a graph theoretic approach to adaptively compute contributions from many-body approximations in an efficient manner and perform accurate hybrid density functional theory (DFT) electronic structure calculations for condensed-phase systems. The salient features of the approach are ONIOM-like. (a) The full-system calculation is performed at a lower level of theory (pure DFT) by enforcing periodic boundary conditions.
View Article and Find Full Text PDFWeak interactions have a critical role in accurately portraying conformational change. However, the computational study of these often requires large basis electronic structure calculations that are generally cost-prohibitive within ab initio molecular dynamics. Here, we present a new approach to efficiently obtain AIMD trajectories in agreement with large, triple-ζ, polarized valence basis functions, at much reduced computational cost.
View Article and Find Full Text PDFWe introduce a new coarse-graining technique for ab initio molecular dynamics that is based on the adaptive generation of connected geometric networks or graphs specific to a given molecular geometry. The coarse-grained nodes depict a local chemical environment and are networked to create edges, triangles, tetrahedrons, and higher order simplexes based on (a) a Delaunay triangulation procedure and (b) a method that is based on molecular, bonded and nonbonded, local interactions. The geometric subentities thus created, that is nodes, edges, triangles, and tetrahedrons, each represent an energetic measure for a specific portion of the molecular system, capturing a specific set of interactions.
View Article and Find Full Text PDF