Publications by authors named "Timothy R Howard"

Chromatin regulation provides a mechanism through which cells dynamically and rapidly regulate their gene expression profiles, playing a pivotal role in diverse biological processes and disease states. The Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) is a method that enables genome-wide detection of accessible chromatin regions, providing information on nucleosome positioning and the epigenetic regulation of the chromatin structure. ATAC-seq has been used in various biological contexts, and several reports have demonstrated its application to studying infections with viral or bacterial pathogens.

View Article and Find Full Text PDF

The interferon inducible protein 16 (IFI16) is a prominent sensor of nuclear pathogenic DNA, initiating innate immune signaling and suppressing viral transcription. However, little is known about mechanisms that initiate IFI16 antiviral functions or its regulation within the host DNA-filled nucleus. Here, we provide in vitro and in vivo evidence to establish that IFI16 undergoes liquid-liquid phase separation (LLPS) nucleated by DNA.

View Article and Find Full Text PDF

Human cells identify invading pathogens and activate immune signaling pathways through a wide array of pattern recognition receptors, including DNA sensors. The interferon-inducible protein 16 (IFI16) is a nuclear DNA sensor that recognizes double-stranded DNA from a number of viral sources, including genomes of nuclear-replicating viruses. Among these is the prevalent human pathogen herpes simplex virus 1 (HSV-1).

View Article and Find Full Text PDF

DNA sensors are critical components of innate immunity that enable cells to recognize infection by pathogens with DNA genomes. The interferon-inducible protein X (IFIX), a member of the PYHIN protein family, is a DNA sensor capable of promoting immune signaling after binding to double-stranded DNA (dsDNA) within either the nucleus or cytoplasm. Here, we investigate the impact of IFIX on the cellular proteome upon introduction of foreign DNA to the nucleus or the cytoplasm as well as regulatory hubs that control IFIX subcellular localization.

View Article and Find Full Text PDF

Nuclear DNA sensors are critical components of the mammalian innate immune system, recognizing the presence of pathogens and initiating immune signaling. These proteins act in the nuclei of infected cells by binding to foreign DNA, such as the viral genomes of nuclear-replicating DNA viruses herpes simplex virus type 1 (HSV-1) and human cytomegalovirus (HCMV). Upon binding to pathogenic DNA, the nuclear DNA sensors were shown to initiate antiviral cytokines, as well as to suppress viral gene expression.

View Article and Find Full Text PDF

DNA sensors are a core component of innate immunity in mammalian cells. In response to pathogen infection, these specialized proteins sense pathogenic DNA from bacteria or viruses and initiate immune signaling cascades. These defense mechanisms rely on the rapid formation and temporal regulation of protein-protein interactions.

View Article and Find Full Text PDF

The formation of multimerized protein assemblies has emerged as a core component of immune signal amplification, yet the biochemical basis of this phenomenon remains unclear for many mammalian proteins within host defense pathways. The interferon-inducible protein 16 (IFI16) is a viral DNA sensor that oligomerizes upon binding to nuclear viral DNA and induces downstream antiviral responses. Here, we identify the pyrin domain (PYD) residues that mediate IFI16 oligomerization in a charge-dependent manner.

View Article and Find Full Text PDF