Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.
View Article and Find Full Text PDFThe Healthy Air, Healthy Schools Study was established to better understand the impact of ultrafine particles (UFPs) on indoor air quality in communities surrounding Seattle-Tacoma (Sea-Tac) International Airport. The study team took multipollutant measurements of indoor and outdoor air pollution at five participating school locations to estimate infiltration indoors. The schools participating in this project were located within a 7-mile radius of Sea-Tac International Airport and within 0.
View Article and Find Full Text PDFMobile monitoring is increasingly employed to measure fine spatial-scale variation in air pollutant concentrations. However, mobile measurement campaigns are typically conducted over periods much shorter than the decadal periods used for modeling chronic exposure for use in air pollution epidemiology. Using the regions of Los Angeles and Baltimore and the time period from 2005 to 2014 as our modeling domain, we investigate whether including mobile or stationary passive sampling device (PSD) monitoring data collected over a single 2-week period in one or two seasons using a unified spatio-temporal air pollution model can improve model performance in predicting NO and NO concentrations throughout the 9-year study period beyond what is possible using only routine monitoring data.
View Article and Find Full Text PDFThe Mobile ObserVations of Ultrafine Particles study was a two-year project to analyze potential air quality impacts of ultrafine particles (UFPs) from aircraft traffic for communities near an international airport. The study assessed UFP concentrations within 10 miles of the airport in the directions of aircraft flight. Over the course of four seasons, this study conducted a mobile sampling scheme to collect time-resolved measures of UFP, CO, and black carbon (BC) concentrations, as well as UFP size distributions.
View Article and Find Full Text PDFWe propose a low-cost passive method for monitoring long-term average levels of light-absorbing carbon air pollution in polluted indoor environments. Building on prior work, the method here estimates the change in reflectance of a passively exposed surface through analysis of digital images. To determine reproducibility and limits of detection, we tested low-cost passive samplers with exposure to kerosene smoke in the laboratory and to environmental pollution in 20 indoor locations.
View Article and Find Full Text PDFMobile monitoring and fixed-site monitoring using passive sampling devices (PSD) are popular air pollutant measurement techniques with complementary strengths and weaknesses. This study investigates the utility of combining data from concurrent 2-week mobile monitoring and fixed-site PSD campaigns in Los Angeles in the summer and early spring to identify sources of traffic-related air pollutants (TRAP) and their spatial distributions. There were strong to moderate correlations between mobile and fixed-site PSD measurements of both NO and NO in the summer and spring (Pearson's r between 0.
View Article and Find Full Text PDFMobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NO, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD.
View Article and Find Full Text PDFAir pollution exposure prediction models can make use of many types of air monitoring data. Fixed location passive samples typically measure concentrations averaged over several days to weeks. Mobile monitoring data can generate near continuous concentration measurements.
View Article and Find Full Text PDFEpidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution).
View Article and Find Full Text PDFA mobile monitoring platform developed at the University of Washington Center for Clean Air Research (CCAR) measured 10 pollutant metrics (10 s measurements at an average speed of 22 km/hr) in two neighborhoods bordering a major interstate in Albuquerque, NM, USA from April 18-24 2012. 5 days of data sharing a common downwind orientation with respect to the roadway were analyzed. The aggregate results show a three-fold increase in black carbon (BC) concentrations within 10 meters of the edge of roadway, in addition to elevated nanoparticle concentration and particulate matter with aerodynamic diameter < 1 μm (PN) concentrations.
View Article and Find Full Text PDFBackground: Concentrations of outdoor fine particulate matter (PM2.5) have been associated with cardiovascular disease. PM2.
View Article and Find Full Text PDFFew studies investigate the impact of air pollution on the leading cause of infant morbidity, acute bronchiolitis. We investigated the influence of PM(2.5) and other metrics of traffic-derived air pollution exposure using a matched case-control dataset derived from 1997 to 2003 birth and infant hospitalization records from the Puget Sound Region, Washington State.
View Article and Find Full Text PDF