Publications by authors named "Timothy R Dean"

The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.

View Article and Find Full Text PDF

Highly conserved regions are attractive targets for detection and quantitation by PCR, but designing species-specific primer sets can be difficult. Ultimately, almost all primer sets are designed based upon literature searches in public domain databases, such as the National Center for Biotechnology Information (NCBI). Prudence suggests that the researcher needs to evaluate as many sequences as available for designing species-specific PCR primers.

View Article and Find Full Text PDF

Goal, Scope And Background: Reducing occupant exposure to indoor mold is the goal of this research, through the efficacy testing of antimicrobial cleaners. Often mold contaminated building materials are not properly removed, but instead surface cleaners are applied in an attempt to alleviate the problem. The efficacy of antimicrobial cleaners to remove, eliminate or control mold growth on surfaces can easily be tested on non-porous surfaces.

View Article and Find Full Text PDF

Due to the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces it is necessary to accurately determine the organisms responsible for these maladies and to identify them in an accurate and timely manner. Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise.

View Article and Find Full Text PDF

Because of the accumulating evidence that suggests that numerous unhealthy conditions in the indoor environment are the result of abnormal growth of the filamentous fungi (mold) in and on building surfaces, it is necessary to accurately reflect the organisms responsible for these maladies and to identify them in precise and timely manner. To this end, we have developed a method that is cost effective, easy to perform, and accurate. We performed a simple polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analysis on multiple members of species known to negatively influence the indoor environment.

View Article and Find Full Text PDF

The SELEX method of in vitro selection was used to isolate RNAs that bind the RB69 RegA translational repressor protein immobilized on Ni-NTA agarose. After five rounds of SELEX, the pool of selected RNA displayed striking sequence uniformity: UAAUAAUAAUAAUA was clearly enriched in the 14 nucleotides that underwent selection. Individual, cloned molecules displayed a repeating (UAA) sequence, with only two RNAs having a 3' AUG.

View Article and Find Full Text PDF

Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods may often be time-consuming and inaccurate, necessitating the development of identification protocols that are rapid, sensitive, and precise. The polymerase chain reaction (PCR) has shown great promise in its ability to identify and quantify individual organisms from a mixed culture environment; however, the cost effectiveness of single organism PCR reactions is quickly becoming an issue.

View Article and Find Full Text PDF

Following air sampling fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and Polymerase Chain Reaction (PCR) applications. The methodology described is both rapid and cost effective for use with multiple fungal organisms.

View Article and Find Full Text PDF