Publications by authors named "Timothy R Cavagnaro"

Ecoacoustics-or acoustic ecology-aids in monitoring elusive and protected species in several ecological contexts. For example, passive acoustic monitoring (PAM), which involves autonomous acoustic sensors, is widely used to detect various taxonomic groups in terrestrial and aquatic ecosystems, from birds and bats to fish and cetaceans. Here, we illustrate the potential of ecoacoustics to monitor soil biodiversity (specifically fauna)-a crucial endeavour given that 59% of species live in soil yet 75% of soils are affected by degradation.

View Article and Find Full Text PDF

Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes.

View Article and Find Full Text PDF

Land use has a critical role to play in both climate change mitigation and biodiversity conservation, and increasingly there have been calls to integrate policies for concurrently meeting Paris Agreement commitments and the UN decade on ecosystem restoration 2021-2030. Currently however, investment activities have been dominated by climate change mitigation activities, including through the development of carbon markets (both voluntary and compliance markets). Whilst climate change mitigation is to be welcomed, the prioritization of carbon in avoided deforestation and reforestation can lead to suboptimal or negative outcomes for biodiversity.

View Article and Find Full Text PDF

The application of nitrogen (N) and phosphorus (P) fertilizers to soils is required to maintain crop yields, so the sufficient and timely delivery of nutrients to match crop demand is important in fertilizer management. We quantified temporal growth responses of tomato plants with different rates of N and P application using high-throughput shoot phenotyping. The tomato plants were grown in soil that had organic, inorganic or a combination of sources of P incorporated.

View Article and Find Full Text PDF

Grassland plants allocate photosynthetically fixed carbon (C) belowground to root biomass and rhizodeposition, but also to support arbuscular mycorrhizal fungi (AMF). These C allocation pathways could increase nutrient scavenging, but also mining of nutrients through enhanced organic matter decomposition. While important for grassland ecosystem functioning, methodological constraints have limited our ability to measure these processes under field conditions.

View Article and Find Full Text PDF

Microbial inoculants containing arbuscular mycorrhizal (AM) fungi are potential tools in increasing the sustainability of our food production systems. Given the demand for sustainable agriculture, the production of such inoculants has potential economic value and has resulted in a variety of commercial inoculants currently being advertised. However, their use is limited by inconsistent product efficacy and lack of consumer confidence.

View Article and Find Full Text PDF

While interest in arbuscular mycorrhizal (AM) fungal effects on soil phosphorus (P) have recently increased, field experiments on this topic are lacking. While microcosm studies provided valuable insights, the lack of field studies represents a knowledge gap. Here, we present a field study in which we grew a mycorrhiza-defective tomato (Solanum lycopersicum L.

View Article and Find Full Text PDF

Achieving sustainable agricultural development requires the efficient use of nutrient resources for crop production. Recovering nutrients from animal manures may play a key role in achieving this. Animal manures typically have low nutrient concentrations, and in ratios that are often not ideal for balanced crop nutrition.

View Article and Find Full Text PDF

Plants spend a high proportion of their photosynthetically fixed carbon (C) belowground to support mycorrhizal associations in return for nutrients, but this C expenditure may decrease with increased soil nutrient availability. In this study, we assessed how the effects of nitrogen (N) fertiliser on specific root respiration (SRR) varied among mycorrhizal type (Myco type). We conducted a multi-level meta-analysis across 1,600 observations from 32 publications.

View Article and Find Full Text PDF

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties.

View Article and Find Full Text PDF

Biological sources of carbon sequestration such as revegetation have been highlighted as important avenues to combat climate change and meet global targets by the global community including the Paris Climate Agreement. However, current and projected carbon prices present a considerable barrier to broad-scale adoption of tree planting as a key mitigation strategy. One avenue to provide additional economic and environmental incentives to encourage wider adoption of revegetation is the bundling or stacking of additional co-beneficial ecosystem services that can be realized from tree planting.

View Article and Find Full Text PDF

A wines' terroir, represented as wine traits with regional distinctiveness, is a reflection of both the biophysical and human-driven conditions in which the grapes were grown and wine made. Soil is an important factor contributing to the uniqueness of a wine produced by vines grown in specific conditions. Here, we evaluated the impact of environmental variables on the soil bacteria of 22 Barossa Valley vineyard sites based on the 16S rRNA gene hypervariable region 4.

View Article and Find Full Text PDF
Article Synopsis
  • Rhizodeposition significantly influences carbon cycling in soil, but accurately measuring it in natural settings has been challenging.
  • Using a C-CO pulse-labeling technique, researchers quantified the role of rhizodeposition in below-ground respiration in a grassland environment.
  • The study found that rhizodeposit decomposition contributes 7-31% to total respiration and is affected by drought and nitrogen treatments, showcasing the complexity of carbon dynamics in these ecosystems.
View Article and Find Full Text PDF

While the impact of arbuscular mycorrhizal fungi (AMF) on phosphorus (P) uptake is well understood, the mechanism(s) of how these fungi affect P leaching from soil is still unclear. Here we present results of a study in which we grew a mycorrhiza-defective tomato (Solanum lycopersicum L.) genotype (named rmc) and its mycorrhizal wild-type progenitor (named 76R) in microcosms containing non-sterile soil, to examine the influence of roots and AMF on P leaching.

View Article and Find Full Text PDF

Zinc is essential for the functioning of many enzymes and plant processes and the malting process. Arbuscular mycorrhizal fungi (AMF) can improve zinc (Zn) uptake in the important cereal crop barley (Hordeum vulgare) on Zn-deficient soils. Here we investigated the impacts of Zn fertilisation and AMF on the yield and grain quality of malting barley cultivars.

View Article and Find Full Text PDF

Current climate change models project that water availability will become more erratic in the future. With soil nitrogen (N) supply coupled to water availability, it is important to understand the combined effects of variable water and N supply on food crop plants (above- and below-ground). Here we present a study that precisely controls soil moisture and compares stable soil moisture contents with a controlled wetting-drying cycle.

View Article and Find Full Text PDF

The positive effects of arbuscular mycorrhizal fungi (AMF) have been demonstrated for plant biomass, and zinc (Zn) and phosphorus (P) uptake, under soil nutrient deficiency. Additionally, a number of Zn and P transporter genes are affected by mycorrhizal colonisation or implicated in the mycorrhizal pathway of uptake. However, a comprehensive study of plant physiology and gene expression simultaneously, remains to be undertaken.

View Article and Find Full Text PDF

There is a growing recognition of the role of arbuscular mycorrhizal fungi (AMF) in food security, specifically the potential for AMF to enhance the yield and mineral nutrition-including phosphorus, zinc (Zn), and iron (Fe)-of food crops. However, the bioavailability of Zn and Fe for humans in the grain of cereal crops can be overestimated by failing to consider the abundance of phytic acid (PA). This is because PA can chelate the micronutrients, making them difficult to absorb.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights that arbuscular mycorrhizal (AM) fungi can boost growth in certain plants like Brachypodium distachyon under phosphorus (P) limitations while negatively affecting them under nitrogen (N) limitations.
  • The effects of these fungi vary significantly based on the plant's genetic makeup, with faster-growing genotypes benefiting from P transfer, while slower-growing ones experience less negative impacts due to surplus carbon and nitrogen.
  • The findings emphasize the importance of plant genotype and its resource management strategies in influencing growth outcomes during AM symbioses, pointing to a complex relationship between nutrient availability and plant growth.
View Article and Find Full Text PDF

Post-fire litter layers are composed of leaves and woody debris that predominantly fall during or soon after the fire event. These layers are distinctly different to pre-fire litters due to their common origin and deposition time. However, heterogeneity can arise from the variable thermal conditions in the canopy during fire.

View Article and Find Full Text PDF

The formation of arbuscular mycorrhizas (AM) can result in positive, neutral or negative responses in the growth and mineral nutrition of host plants, particularly that of P, Zn and other micronutrients. This study examined the growth and nutritional responses of 15 agriculturally important plant species, including cereals, legumes and vegetables, with and without inoculation with the AM fungus (AMF) Rhizophagus irregularis. Furthermore, we explored whether the responses differed between different functional groups of plants such as monocots and dicots, C3 and C4 plants, and N-fixing and non-N-fixing plants.

View Article and Find Full Text PDF

Background: Increasing zinc (Zn) concentrations in crops is important for alleviation of human Zn deficiency. Arbuscular mycorrhizal fungi (AMF) contribute to plant Zn uptake, but their contribution to Zn in the edible portion of crops has not yet been investigated. This study aimed to quantify the mycorrhizal pathway of Zn uptake into grain of wheat and barley under varying soil Zn availabilities.

View Article and Find Full Text PDF

Reducing the release rate of urea can increase its use efficiency and minimize negative effects on the environment. A novel fertilizer material that was formed by blending brown coal (BC) with urea, delayed fertilizer N release in controlled climatic conditions in a glasshouse, through strong retention facilitated by the extensive surface area, porous structure and chemical functional groups in the BC. However, the role of BC as a carrier of synthetic urea and the effect of their interaction with various soil types on the dynamics and mineralization of N remains largely unclear.

View Article and Find Full Text PDF