The voluntary allocation of visuospatial attention depends upon top-down influences from the frontal eye field (FEF) and intraparietal sulcus (IPS)-the core regions of the dorsal attention network (DAN)-to visual occipital cortex (VOC), and has been further associated with within-DAN influences, particularly from the FEF to IPS. However, the degree to which these influences manifest at rest and are then modulated during anticipatory visuospatial attention tasks remains poorly understood. Here, we measured both undirected and directed functional connectivity (UFC, DFC) between the FEF, IPS, and VOC at rest and during an anticipatory visuospatial attention task, using a slow event-related design.
View Article and Find Full Text PDFThrough its early history, cognitive neuroscience largely followed a modular paradigm wherein high-level cognitive functions were mapped onto locally segregated brain regions. However, recent evidence drives a continuing shift away from modular theories of cognitive brain function, and toward theories which hold that cognition arises from the integrated activity of large-scale, distributed networks of brain regions. A growing consensus favors the fundamental concept of this new paradigm: the large-scale cognitive brain network, or neurocognitive network.
View Article and Find Full Text PDF