Publications by authors named "Timothy P Lodge"

Article Synopsis
  • Bottlebrush block polymers feature densely grafted side chains from a backbone, allowing for large ordered morphologies suitable for applications like photonic crystals.
  • The study focused on creating a library of 50 triblock terpolymers (PLA-PEP-PS) through advanced polymerization techniques, leading to structures with complex phase behaviors.
  • Results indicated diverse mesoscopic structures and tunable unit cell dimensions, showcasing the potential of multiblock bottlebrushes for varied material applications.
View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a highly restrictive barrier at the interface between the brain and the vascular system. Even under BBB dysfunction, it is extremely difficult to deliver therapies across the barrier, limiting the options for treatment of neurological injuries and disorders. To circumvent these challenges, there is interest in developing therapies that directly engage with the damaged BBB to restore its function.

View Article and Find Full Text PDF

The present work focuses on the synthesis of a vanadium nitride (VN)/carbon nanocomposite material via the thermal decomposition of vanadyl phthalocyanine (VOPC). The morphology and chemical structure of the synthesized compounds were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS). The successful syntheses of the VOPC and non-metalated phthalocyanine (HPC) precursors were confirmed using FTIR and XRD.

View Article and Find Full Text PDF

Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies.

View Article and Find Full Text PDF

This work focuses on the synthesis of titanium nitride-carbon (TiN-carbon) composites by the thermal decomposition of a titanyl phthalocyanine (TiN(TD)) precursor into TiN. The synthesis of TiN was also performed using the sol-gel method (TiN(SG)) of an alkoxide/urea. The structure and morphology of the TiN-carbon and its precursors were characterized by XRD, FTIR, SEM, TEM, EDS, and XPS.

View Article and Find Full Text PDF

Block polymer self-assembly affords a versatile bottom-up strategy to develop materials with the desired properties dictated by specific symmetries and dimensions. Owing to distinct properties compared with linear counterparts, bottlebrush block polymers with side chains densely grafted on a backbone have attracted extensive attention. However, the morphologies found in bottlebrush block polymers so far are limited, and only lamellar and cylindrical ordered phases have been reported in diblock bottlebrushes.

View Article and Find Full Text PDF

Low concentration polymer additives can significantly alter crystal growth kinetics of molecular liquids and glasses. However, the effect of polymer concentration on nucleation kinetics remains poorly understood. Based on an experimentally determined first nucleation time (time to form the first critical nucleus, t), we show that the polymer overlap concentration, c*, where polymer coils in the molecular liquid start to overlap with each other, is a critical polymer concentration for efficient inhibition of crystallization of a molecular liquid.

View Article and Find Full Text PDF

Bicontinuous thermotropic liquid crystal (LC) materials, e.g., double gyroid (DG) phases, have garnered significant attention due to the potential utility of their 3D network structures in wide-ranging applications.

View Article and Find Full Text PDF

Poloxamers, a class of biocompatible, commercially available amphiphilic block polymers (ABPs) comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) blocks, interact with phospholipid bilayers, resulting in altered mechanical and surface properties. These block copolymers are useful in a variety of applications including therapeutics for Duchenne muscular dystrophy, as cell membrane stabilizers, and for drug delivery, as liposome surface modifying agents. Hydrogen bonding between water and oxygen atoms in PEO and PPO units results in thermoresponsive behavior because the bound water shell around both blocks dehydrates as the temperature increases.

View Article and Find Full Text PDF

The phase behavior of ternary blends composed of two homopolymers (A, B) and their corresponding diblock copolymer (A-B) has been widely studied, with emphasis on the volumetrically symmetric isopleth and the formation of bicontinuous microemulsions. However, almost all the previous studies employed linear polymers, and little is known about the impact of polymer architecture on the phase behavior of such ternary blends. Here, we report the self-assembly of three sets of ternary blends of polystyrene (PS) and poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA), with different lengths of oligo(ethylene glycol) side chains .

View Article and Find Full Text PDF

Poloxamers, also known by their trade name, Pluronics, are known to mitigate damage to cellular membranes. However, the mechanism underlying this protection is still unclear. We investigated the effect of poloxamer molar mass, hydrophobicity, and concentration on the mechanical properties of giant unilamellar vesicles, composed of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, using micropipette aspiration (MPA).

View Article and Find Full Text PDF

We present an approach to photocrosslink bicontinuous microemulsions derived from ternary blends of poly(methoxyethyl acrylate) (PM, = 4200 g/mol), poly(hexyl methacrylate--coumarin methacrylate) (PHC, = 6800 g/mol), and PM--PHC diblock polymer ( = 19,400 g/mol) in a phase-selective manner, enabling structural characterization at an unprecedented level of detail. This strategy utilizes the [2 + 2] photodimerization reaction of coumarin derivatives to covalently crosslink blends without the use of harsh reagents or disruptive thermal treatment, thus preserving the intricate network structure throughout curing. The resulting crosslinked bicontinuous microemulsions exhibited rubbery behavior at elevated temperatures, achieving an elastic shear modulus of nearly 1 MPa at 70 °C, owing to the presence of the three-dimensional co-continuous network morphology.

View Article and Find Full Text PDF

First-in-class membrane stabilizer Poloxamer 188 (P188) has been shown to confer membrane protection in an extensive range of clinical conditions; however, elements of the systemic distribution and localization of P188 at the organ, tissue, and muscle fiber levels have not yet been elucidated. Here we used non-invasive fluorescence imaging to directly visualize and track the distribution and localization of P188 . The results demonstrated that the Alx647 probe did not alter the fundamental properties of P188 to protect biological membranes.

View Article and Find Full Text PDF

Poloxamers─triblock copolymers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO)─have demonstrated cell membrane stabilization efficacy against numerous types of stress. However, the mechanism responsible for this stabilizing effect remains elusive, hindering engineering of more effective therapeutics. Bottlebrush polymers have a wide parameter space and known relationships between architectural parameters and polymer properties, enabling their use as a tool for mechanistic investigations of polymer-lipid bilayer interactions.

View Article and Find Full Text PDF

Self-assembly of block copolymers into interesting and useful nanostructures, in both solution and bulk, is a vibrant research arena. While much attention has been paid to characterization and prediction of equilibrium phases, the associated dynamic processes are far from fully understood. Here, we explore what is known and not known about the equilibration of particle phases in the bulk, and spherical micelles in solution.

View Article and Find Full Text PDF

Block polymer self-assembly provides a versatile platform for creating useful materials endowed with three-dimensional periodic network morphologies that support orthogonal physical properties such as high ionic conductivity and a high elastic modulus. However, coil configurations limit conventional linear block polymers to finite ordered network dimensions, which are further restricted by slow self-assembly kinetics at high molecular weights. A bottlebrush architecture can circumvent both shortcomings owing to extended backbone configurations due to side chain crowding and molecular dynamics substantially free of chain entanglements.

View Article and Find Full Text PDF

Miscibility is an important indicator of physical stability against crystallization of amorphous solid dispersions (ASDs). Currently available methods for miscibility determination have both theoretical and practical limitations. Here we report a method of miscibility determination based on the overlap concentration, c*, which can be conveniently determined from the viscosity-composition diagram.

View Article and Find Full Text PDF

Molecular dynamics simulations are used to study binary blends of an AB-type diblock and an AB-type miktoarm triblock amphiphiles (also known as high-χ block oligomers) consisting of sugar-based (A) and hydrocarbon (B) blocks. In their pure form, the AB diblock and AB triblock amphiphiles self-assemble into ordered lamellar (LAM) and cylindrical (CYL) structures, respectively. At intermediate compositions, however, the AB-rich blend (0.

View Article and Find Full Text PDF

Bottlebrush polymers are characterized by an expansive parameter space, including graft length and spacing along the backbone, and these features impact various structural and physical properties such as molecular diffusion and bulk viscosity. In this work, we report a synthetic strategy for making grafted block polymers with poly(propylene oxide) and poly(ethylene oxide) side chains, bottlebrush analogues of poloxamers. Combined anionic and sequential ring-opening metathesis polymerization yielded low dispersity polymers, at full conversion of the macromonomers, with control over graft length, graft end-groups, and overall molecular weight.

View Article and Find Full Text PDF

We use umbrella sampling to compute the free energy trajectory of a single chain undergoing expulsion from an isolated diblock copolymer micelle. This approach elucidates the experimentally unobservable transition state, identifies the spatial position of the maximum free energy, and reveals the chain conformation of a single chain as it undergoes expulsion. Combining umbrella sampling with dissipative particle dynamics simulations of AB micelles reveals that the core block (A) of the expelled chain remains partially stretched at the transition state, in contrast with the collapsed state assumed in some previous models.

View Article and Find Full Text PDF

A series of symmetric poly[(oligo(ethylene glycol) methyl ether methacrylate--oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]--polystyrene (POEGMA-PS) diblock copolymers were synthesized as a model system to probe the effect of charge fraction on the phase behavior of charged-neutral single-ion conducting diblock copolymers. Small-angle X-ray scattering (SAXS) experiments showed that increasing the charge fraction does not alter the ordered phase morphology (lamellar) but increases the order-disorder transition temperature () significantly. Additionally, the effective Flory-Huggins interaction parameter (χ) was found to increase linearly with the charge fraction, similar to the case of conventional salt-doped diblock copolymers.

View Article and Find Full Text PDF

Linear-dendritic block copolymers (LDBCs) have emerged as promising materials for drug delivery applications, with their hybrid structure exploiting advantageous properties of both linear and dendritic polymers. LDBCs have promising encapsulation efficiencies that can be used to encapsulate both hydrophobic and hydrophilic dyes for bioimaging, cancer therapeutics, and small biomolecules. Additionally, LDBCS can be readily functionalized with varying terminal groups for more efficient targeted delivery.

View Article and Find Full Text PDF

Poloxamers consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) segments can protect cell membranes against various forms of stress. We investigated the role of the hydrophobic block chemistry on polymer/membrane binding and cell membrane protection by comparing a series of poly(butylene oxide)--PEO (PBO--PEO) copolymers to poloxamer analogues, using a combination of pulsed-field-gradient (PFG) NMR experiments and a lactate dehydrogenase (LDH) cell assay. We found that the more hydrophobic PBO--PEO copolymers bound more significantly to model liposomes composed of 1-palmitol-2-oleoyl-glycero-3-phosphocholine (POPC) compared to poly(propylene oxide) (PPO)/PEO copolymers.

View Article and Find Full Text PDF

Polymer/ionic liquid systems are being increasingly explored, yet those exhibiting lower critical solution temperature (LCST) phase behavior remain poorly understood. Poly(benzyl methacrylate) in certain ionic liquids constitute unusual LCST systems, in that the second virial coefficient () in dilute solutions has recently been shown to be positive, indicative of good solvent behavior, even above phase separation temperatures, where < 0 is expected. In this work, we describe the LCST phase behavior of poly(benzyl methacrylate) in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide for three different molecular weights (32, 63, and 76 kg/mol) in concentrated solutions (5-40% by weight).

View Article and Find Full Text PDF

Molecular simulations with atomistic or coarse-grained force fields are a powerful approach for understanding and predicting the self-assembly phase behavior of complex molecules. Amphiphiles, block oligomers, and block polymers can form mesophases with different ordered morphologies describing the spatial distribution of the blocks, but entirely amorphous nature for local packing and chain conformation. Screening block oligomer chemistry and architecture through molecular simulations to find promising candidates for functional materials is aided by effective and straightforward morphology identification techniques.

View Article and Find Full Text PDF