Peptide side chain interactions were studied by molecular dynamics simulation using explicit solvent on a peptide with the sequence AAARAAAAEAAEAAAARA. Three different protonation states of the glutamic acid side chains were simulated for four 20 ns runs each, a total simulation time of 240 ns. Two different salt bridge geometries were observed and the preferred geometry was found to depend on Glu - Arg residue spacing.
View Article and Find Full Text PDFFTIR difference spectroscopy is used to reveal changes in the internal structure and amino acid protonation states of bovine cytochrome c oxidase (CcO) that occur upon photolysis of the CO adduct of the two-electron reduced (mixed valence, MV) and four-electron reduced (fully reduced, FR) forms of the enzyme. FTIR difference spectra were obtained in D(2)O (pH 6-9.3) between the MV-CO adduct (heme a(3) and Cu(B) reduced; heme a and Cu(A) oxidized) and a photostationary state in which the MV-CO enzyme is photodissociated under constant illumination.
View Article and Find Full Text PDFThe thermal unfolding of a series of 6-, 10-, and 14-mer cyclic beta-hairpin peptides was studied to gain insight into the mechanism of formation of this important secondary structure. The thermodynamics of the transition were characterized using temperature dependent Fourier transform infrared spectroscopy. Thermodynamic data were analyzed using a two-state model which indicates increasing cooperativity along the series.
View Article and Find Full Text PDF