Computational modelling of microbiome metabolism has proved instrumental to catalyse our understanding of diet-host-microbiome-disease interactions through the interrogation of mechanistic, strain- and molecule-resolved metabolic models. We present APOLLO, a resource of 247,092 human microbial genome-scale metabolic reconstructions spanning 19 phyla and accounting for microbial genomes from 34 countries, all age groups, and five body sites. We explored the metabolic potential of the reconstructed strains and developed a machine learning classifier able to predict with high accuracy the taxonomic strain assignments.
View Article and Find Full Text PDF