Publications by authors named "Timothy O Jobe"

Fusarium wilt [ f. sp. (FOV)] in cotton is a widespread soilborne pathogen that causes vascular plant disease and is responsible for substantial crop losses worldwide.

View Article and Find Full Text PDF

f. sp race 4 (FOV4) is the most virulent cotton wilt pathogen in the United States. There is an urgent need for improved detection and diagnostics to combat the spread of FOV4.

View Article and Find Full Text PDF

The phytohormone cytokinin is implicated in a range of growth, developmental, and defense processes. A growing body of evidence supports a crosstalk between cytokinin and nutrient signaling pathways, such as nitrate availability. Cytokinin signaling regulates sulfur-responsive gene expression, but the underlying molecular mechanisms and their impact on sulfur-containing metabolites have not been systematically explored.

View Article and Find Full Text PDF

Sulfate assimilation is an essential pathway of plant primary metabolism, regulated by the demand for reduced sulfur (S). The S-containing tripeptide glutathione (GSH) is the key signal for such regulation in Arabidopsis, but little is known about the conservation of these regulatory mechanisms beyond this model species. Using two model monocot species, C3 rice (Oryza sativa) and C4Setaria viridis, and feeding of cysteine or GSH, we aimed to find out how conserved are the regulatory mechanisms described for Arabidopsis in these species.

View Article and Find Full Text PDF

The transcriptional regulators of arsenic-induced gene expression remain largely unknown. Sulfur assimilation is tightly linked with arsenic detoxification. Here, we report that mutant alleles in the SLIM1 transcription factor are substantially more sensitive to arsenic than cadmium.

View Article and Find Full Text PDF

Arsenic stress causes rapid transcriptional responses in plants. However, transcriptional regulators of arsenic-induced gene expression in plants remain less well known. To date, forward genetic screens have proven limited for dissecting arsenic response mechanisms.

View Article and Find Full Text PDF

Sulfur, an indispensable constituent of many cellular components, is a growth-limiting macronutrient for plants. Thus, to successfully adapt to changing sulfur availability and environmental stress, a sulfur-deficiency response helps plants to cope with the limited supply. On the transcriptional level, this response is controlled by SULFUR LIMITATION1 (SLIM1), a member of the ETHYLENE-INSENSITIVE3-LIKE (EIL) transcription factor family.

View Article and Find Full Text PDF

Global climate change is a challenge for efforts to ensure food security for future generations. It will affect crop yields through changes in temperature and precipitation, as well as the nutritional quality of crops. Increased atmospheric CO leads to a penalty in the content of proteins and micronutrients in most staple crops, with the possible exception of C crops.

View Article and Find Full Text PDF
Article Synopsis
  • Systematic mappings of protein interactome networks provide crucial functional insights for various model organisms.
  • The authors developed a new tool called PLATE-seq that allows for the rapid sequencing of thousands of DNA elements, demonstrating its effectiveness by creating an ORFeome for 2,300 genes.
  • They constructed a detailed protein-protein interactome map showing 322 interactions among 289 proteins, significantly expanding knowledge of these interactions in rice by about 50%.
View Article and Find Full Text PDF

Background: Green plants comprise two lineages: (1) the streptophytes that colonised land and (2) the chlorophytes that have adaptations to land but remained mostly aquatic. To better understand what made streptophytes so successful, we are currently establishing the chlorophyte alga sp. (Chaetophorales, Chlorophyceae) as a model for comparative analyses between these two lineages.

View Article and Find Full Text PDF

In her 1929 essay A Room of One's Own, Virginia Wolf famously wrote, "One cannot think well, love well, sleep well, if one has not dined well." While this popular quote is perhaps not the most inspiring, it is an elegant reminder that food and the cultural practices surrounding food are paramount for our wellbeing. However, in our quest to feed a growing global population, we have become focused on increasing the production of a few staple crops and overlooked hundreds or thousands of locally and regionally important crops that may represent the future of agriculture.

View Article and Find Full Text PDF

Plants are capable of synthesizing all the molecules necessary to complete their life cycle from minerals, water, and light. This plasticity, however, comes at a high energetic cost and therefore plants need to regulate their economy and allocate resources accordingly. Iron-sulfur (Fe-S) clusters are at the center of photosynthesis, respiration, amino acid, and DNA metabolism.

View Article and Find Full Text PDF

The first product of sulfate assimilation in plants, cysteine, is a proteinogenic amino acid and a source of reduced sulfur for plant metabolism. Cysteine synthesis is the convergence point of the three major pathways of primary metabolism: carbon, nitrate, and sulfate assimilation. Despite the importance of metabolic and genetic coordination of these three pathways for nutrient balance in plants, the molecular mechanisms underlying this coordination, and the sensors and signals, are far from being understood.

View Article and Find Full Text PDF

Transcription factors (TFs) regulate the expression of other genes to indirectly mediate stress resistance mechanisms. Therefore, when studying TF-mediated stress resistance, it is important to understand how TFs interact with genes in the genetic background. Here, we fine-mapped the aluminum (Al) resistance QTL to a 44-kb region containing six genes.

View Article and Find Full Text PDF

Manganese (Mn) is an essential micronutrient needed for plant growth and development, but can be toxic to plants in excess amounts. However, some plant species have detoxification mechanisms that allow them to accumulate Mn to levels that are normally toxic, a phenomenon known as hyperaccumulation. These species are excellent candidates for developing a cost-effective remediation strategy for Mn-polluted soils.

View Article and Find Full Text PDF

Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant.

View Article and Find Full Text PDF

Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene.

View Article and Find Full Text PDF

Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential metals, at high concentrations, and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids.

View Article and Find Full Text PDF

Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi.

View Article and Find Full Text PDF