Lepidopteran pests have been successfully managed by the adoption of insect resistant transgenic plants expressing Cry and/or Vip insecticidal proteins derived from Bacillus thuringiensis (Bt plants). Among such pests, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is highlighted for its destructive potential in maize crops and for cases of field-evolved resistance to Bt plants. Cry insecticidal proteins expressed in Bt plants are known for their interaction with insect midgut receptors and subsequent midgut cell disruption that leads to target pest death.
View Article and Find Full Text PDFPLoS One
July 2023
The genetically modified cotton DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 expressing Cry1Ac, Cry1F and Vip3Aa19 from Bacillus thuringiensis Berliner (Bt) has been cultivated in Brazil since the 2020/2021 season. Here, we assessed the performance of DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 cotton expressing Cry1Ac, Cry1F and Vip3Aa19 against Helicoverpa armigera (Hübner), Helicoverpa zea (Boddie), and their hybrid progeny. We also carried out evaluations with DAS-21023-5 × DAS-24236-5 cotton containing Cry1Ac and Cry1F.
View Article and Find Full Text PDFThe broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action.
View Article and Find Full Text PDFLike conventional crops, transgenic plants expressing insecticidal toxins from Bacillus thuringiensis (Bt) are subjected to water deprivation. However, the effects of water deprivation over the insecticidal activity of Bt plants are not well understood. We submitted Bt maize and Bt soybean to water deprivation and evaluated biochemical stress markers and the insecticidal activity of plants against target insects.
View Article and Find Full Text PDFThe efficacy and non-target arthropod effects of transgenic DAS-21023-5 × DAS-24236-5 × SYN-IR102-7 Bt cotton, expressing proteins Cry1Ac, Cry1F and Vip3Aa19, was examined through field trials in Brazil. Fifteen field efficacy experiments were conducted from 2014 through the 2020 growing season across six different states in Brazil to evaluate performance against key lepidopteran pests through artificial infestations of Chrysodeixis includens (Walker), Spodoptera frugiperda (J.E.
View Article and Find Full Text PDFSpodoptera frugiperda is one of the main pests of maize and cotton in Brazil and has increased its occurrence on soybean. Field-evolved resistance of this species to Cry1 Bacillus thuringiensis (Bt) proteins expressed in maize has been characterized in Brazil, Argentina, Puerto Rico and southeastern U.S.
View Article and Find Full Text PDFPest Manag Sci
December 2020
Background: Spodoptera eridania (Stoll), S. cosmioides (Walker) and S. albula (Walker) (Lepidoptera: Noctuidae) are considered secondary pests of soybean in South America.
View Article and Find Full Text PDFVarious lepidopteran insects are responsible for major crop losses worldwide. Although crop plant varieties developed to express (Bt) proteins are effective at controlling damage from key lepidopteran pests, some insect populations have evolved to be insensitive to certain Bt proteins. Here, we report the discovery of a family of homologous proteins, two of which we have designated IPD083Aa and IPD083Cb, which are from .
View Article and Find Full Text PDFCrops expressing Bacillus thuringiensis (Bt)-derived insecticidal protein genes have been commercially available for over 15 years and are providing significant value to growers. However, there remains the need for alternative insecticidal actives due to emerging insect resistance to certain Bt proteins. A screen of bacterial strains led to the discovery of a two-component insecticidal protein named AfIP-1A/1B from an Alcaligenes faecalis strain.
View Article and Find Full Text PDFThe coleopteran insect western corn rootworm (WCR) (Diabrotica virgifera virgifera LeConte) is a devastating crop pest in North America and Europe. Although crop plants that produce Bacillus thuringiensis (Bt) proteins can limit insect infestation, some insect populations have evolved resistance to Bt proteins. Here we describe an insecticidal protein, designated IPD072Aa, that is isolated from Pseudomonas chlororaphis.
View Article and Find Full Text PDFA simulation model of the temporal and spatial dynamics and population genetics of western corn rootworm, Diabrotica virgifera virgifera LeConte, was created to evaluate the use of block refuges and seed blends in the management of resistance to transgenic insecticidal corn (Zea mays L.). This Bt corn expresses one transgenic corn event, DAS-59122-7, that produces a binary insecticidal protein toxin (Cry34Ab1/Cry35Ab1) and provides host-plant resistance.
View Article and Find Full Text PDFThe first transgenic corn hybrids expressing the Bacillus thuringiensis (Bt) Cry3Bb1 protein to control corn rootworm (Diabrotica spp.) larvae were registered for commercial use in 2003. This study was conducted to investigate the effect of Cry3Bb1 protein in combination with a cucurbitacin bait on adult feeding and longevity of both organophosphate-resistant and -susceptible western corn rootworms, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae).
View Article and Find Full Text PDFCorn rootworm larval feeding on corn roots can significantly reduce grain yield by interfering with photosynthetic rates, limiting the uptake of water and nutrients, and by increasing the plant's susceptibility to lodging. Of the techniques developed to measure the efficacy of corn rootworm larval control tactics, root damage ratings have generally been adopted as the standard because sampling roots is relatively efficient. Historically, the primary scales used for scoring root injury from corn rootworm larval feeding have been the 1-6 and 1-9 scales.
View Article and Find Full Text PDFAreawide pest management involves the uniform application of a pest control strategy over wide geographic areas. Therefore, these programs are likely to impose intense selective pressures, and the risk for resistance development among pest species for which areawide management programs are implemented is likely to be high. Pilot studies for areawide management of western corn rootworm, Diabrotica virgifera virgifera LeConte, were conducted from 1996 to 2002 at four different sites across the Corn Belt.
View Article and Find Full Text PDFField and laboratory studies were conducted in 2000 and 2001 to determine the feasibility of mass marking western corn rootworm adults, Diabrotica virgifera virgifera LeConte, with RbCl in the field. Results showed that application of rubidium (Rb) in solution to both the soil (1 g Rb/plant) and whorl (1 g Rb/plant) of corn plants was optimal for labeling western corn rootworm adults during larval development. Development of larvae on Rb-enriched corn with this technique did not significantly influence adult dry weight or survival.
View Article and Find Full Text PDFPlanting corn, Zea mays L., in row spacings less than the conventional width of 76 cm has been shown to increase grain yields. This study was conducted to determine if row spacing and plant density affected corn rootworm, Diabrotica virgifera virgifera LeConte and D.
View Article and Find Full Text PDF