Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities.
View Article and Find Full Text PDFA cost-effective capillary dialysis apparatus (Toledo Capillary Box, TCB) developed for biomacromolecule crystal growth in microgravity and unit gravity environments can provide slow equilibration between the precipitant reservoir and capillary solutions, nurturing growth of neutron-diffraction-quality crystals. Under microgravity conditions, mass transfer of precipitants and biomacro-mol-ecules occurs under diffusion-controlled conditions, promoting slow growth and suppressing defect formation. The equilibration of common precipitants (polyethyl-ene glycol and salts such as ammonium sulfate) between capillary and reservoir solutions was measured for capillaries oriented horizontally or vertically with respect to the gravitational field at unit gravity.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP)-dependent enzymes have been extensively studied for their ability to fine-tune PLP cofactor electronics to promote a wide array of chemistries. Neutron crystallography offers a straightforward approach to studying the electronic states of PLP and the electrostatics of enzyme active sites, responsible for the reaction specificities, by enabling direct visualization of hydrogen atom positions. Here we report a room-temperature joint X-ray/neutron structure of aspartate aminotransferase (AAT) with pyridoxamine 5'-phosphate (PMP), the cofactor product of the first half reaction catalyzed by the enzyme.
View Article and Find Full Text PDFBiologically active vitamin B-derivative pyridoxal 5'-phosphate (PLP) is an essential cofactor in amino acid metabolic pathways. PLP-dependent enzymes catalyze a multitude of chemical reactions but, how reaction diversity of PLP-dependent enzymes is achieved is still not well understood. Such comprehension requires atomic-level structural studies of PLP-dependent enzymes.
View Article and Find Full Text PDFNMR-assisted crystallography-the integrated application of solid-state NMR, X-ray crystallography, and first-principles computational chemistry-holds significant promise for mechanistic enzymology: by providing atomic-resolution characterization of stable intermediates in enzyme active sites, including hydrogen atom locations and tautomeric equilibria, NMR crystallography offers insight into both structure and chemical dynamics. Here, this integrated approach is used to characterize the tryptophan synthase α-aminoacrylate intermediate, a defining species for pyridoxal-5'-phosphate-dependent enzymes that catalyze β-elimination and replacement reactions. For this intermediate, NMR-assisted crystallography is able to identify the protonation states of the ionizable sites on the cofactor, substrate, and catalytic side chains as well as the location and orientation of crystallographic waters within the active site.
View Article and Find Full Text PDFProtein dynamics on various time scales from femtoseconds to milliseconds impacts biological function by driving proteins to conformations conducive to ligand binding and creating functional states in enzyme catalysis. Neutron vibrational spectroscopy carried out by measuring inelastic neutron scattering from protein molecules in combination with molecular simulations has the unique ability of detecting and visualizing changes in the picosecond protein vibrational dynamics due to ligand binding. Here we present neutron vibrational spectra of a homodimeric pyridoxal 5'-phosphate-dependent enzyme, aspartate aminotransferase, obtained from the open internal aldimine and closed external aldimine conformational states.
View Article and Find Full Text PDFEnzyme catalysis is the primary activity in energy and information metabolism and enzyme cofactors are key to the catalytic ability of most enzymes. Pyridoxal 5'-phosphate (PLP) cofactor, derived from Vitamin B6, is widely distributed in nature and has significant latitude in catalytic diversity. X-ray crystallography has revealed the structures of diverse PLP dependent enzymes from multiple families.
View Article and Find Full Text PDFThe high affinity (KD ~ 10-15 M) of biotin for avidin and streptavidin is the essential component in a multitude of bioassays with many experiments using biotin modifications to invoke coupling. Equilibration times suggested for these assays assume that the association rate constant (kon) is approximately diffusion limited (109 M-1s-1) but recent single molecule and surface binding studies indicate that they are slower than expected (105 to 107 M-1s-1). In this study, we asked whether these reactions in solution are diffusion controlled, which reaction model and thermodynamic cycle describes the complex formation, and if there are any functional differences between avidin and streptavidin.
View Article and Find Full Text PDFEnzymes dependent on pyridoxal 5'-phosphate (PLP, the active form of vitamin B) perform a myriad of diverse chemical transformations. They promote various reactions by modulating the electronic states of PLP through weak interactions in the active site. Neutron crystallography has the unique ability of visualizing the nuclear positions of hydrogen atoms in macromolecules.
View Article and Find Full Text PDFPyridoxal 5'-phosphate (PLP) is a fundamental, multifunctional enzyme cofactor used to catalyze a wide variety of chemical reactions involved in amino acid metabolism. PLP-dependent enzymes optimize specific chemical reactions by modulating the electronic states of PLP through distinct active site environments. In aspartate aminotransferase (AAT), an extended hydrogen bond network is coupled to the pyridinyl nitrogen of the PLP, influencing the electrophilicity of the cofactor.
View Article and Find Full Text PDFNeutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution.
View Article and Find Full Text PDFDamaged DNA, generated by the abstraction of one of five hydrogen atoms from the 2'-deoxyribose ring of the nucleic acid, can contain a variety of lesions, some of which compromise physiological processes. Recently, DNA damage, resulting from the formation of a C3'-thymidinyl radical in DNA oligomers, was found to be dependent on nucleic acid structure. Architectures relevant to DNA replication were observed to generate larger amounts of strand-break and 1-(2'-deoxy- β -D-threo-pentofuranosyl)thymidine formation than that observed for duplex DNA.
View Article and Find Full Text PDFLipoxygenases are critical enzymes in the biosynthesis of families of bioactive lipids including compounds with important roles in the initiation and resolution of inflammation and in associated diseases such as diabetes, cardiovascular disease, and cancer. Crystals diffracting to high resolution (1.9 Å) were obtained for a complex between the catalytic domain of leukocyte 12-lipoxygenase and the isoform-specific inhibitor, 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP).
View Article and Find Full Text PDFBacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA.
View Article and Find Full Text PDFEfficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms.
View Article and Find Full Text PDFAlanyl-tRNA synthetase, a dimeric class 2 aminoacyl-tRNA synthetase, activates glycine and serine at significant rates. An editing activity hydrolyzes Gly-tRNA(ala) and Ser-tRNA(ala) to ensure fidelity of aminoacylation. Analytical ultracentrifugation demonstrates that the enzyme is predominately a dimer in solution.
View Article and Find Full Text PDFThe bacteriophage T4 encodes 10 proteins, known collectively as the replisome, that are responsible for the replication of the phage genome. The replisomal proteins can be subdivided into three activities; the replicase, responsible for duplicating DNA, the primosomal proteins, responsible for unwinding and Okazaki fragment initiation, and the Okazaki repair proteins. The replicase includes the gp43 DNA polymerase, the gp45 processivity clamp, the gp44/62 clamp loader complex, and the gp32 single-stranded DNA binding protein.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
November 2010
Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2010
Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 A resolution using a home source, to 1.6 A resolution on NE-CAT at the Advanced Photon Source and to 2.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2008
Increasing the solubility of protein stock solutions to above that in a standard chromatography buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl) led to an increase in the number of crystallization conditions for ten globular proteins subjected to two crystal screens: the Index and Precipitant/Precipitant-Additive (P/PA) Screens. Solubility enhancement of protein stock solutions was achieved through screening and selection of buffer components to formulate an optimal buffer.
View Article and Find Full Text PDFBacteriophage T4 RNase H, a flap endonuclease-1 family nuclease, removes RNA primers from lagging strand fragments. It has both 5' nuclease and flap endonuclease activities. Our previous structure of native T4 RNase H (PDB code 1TFR) revealed an active site composed of highly conserved Asp residues and two bound hydrated magnesium ions.
View Article and Find Full Text PDFThe stratum corneum, the outer layer of the epidermis, serves as a protective barrier to isolate the skin from the external environment. Keratinocyte transglutaminase 1 (TGase 1) catalyzes amide crosslinking between glutamine and lysine residues on precursor proteins forming the impermeable layers of the epidermal cell envelopes (CE), the highly insoluble membranous structures of the stratum corneum. Patients with the autosomal recessive skin disorder lamellar ichthyosis (LI) appear to have deficient cross-linking of the cell envelope due to mutations identified in TGase 1, linking this enzyme to LI.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
July 2006
The utility of a preliminary solubility screen has been assessed on ten test proteins. It is proposed that maximizing the protein solubility prior to crystal setups is likely to improve crystal growth. In crystallization setups, drops of a protein solution are mixed with various crystallization solutions which are then allowed to equilibrate.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
May 2006
Human S100A15 is a novel member of the S100 family of EF-hand calcium-binding proteins and was recently identified in psoriasis, where it is significantly upregulated in lesional skin. The protein is implicated as an effector in calcium-mediated signal transduction pathways. Although its biological function is unclear, the association of the 11.
View Article and Find Full Text PDFWe have determined a 2.1 A crystal structure for human mitochondrial ClpP (hClpP), the proteolytic component of the ATP-dependent ClpXP protease. HClpP has a structure similar to that of the bacterial enzyme, with the proteolytic active sites sequestered within an aqueous chamber formed by face-to-face assembly of the two heptameric rings.
View Article and Find Full Text PDF