Graphene shows great promise not only as a highly conductive flexible and transparent electrode for fabricating novel device architectures but also as an ideal synthesis platform for studying fundamental growth mechanisms of various materials. In particular, directly depositing metal phthalocyanines (MPc's) on graphene is viewed as a compelling approach to improve the performance of organic photovoltaics and light-emitting diodes. In this work, we systematically investigate the ZnPc physical vapor deposition (PVD) on graphene either as-grown on Cu or as-transferred on various substrates including Si(100), C-plane sapphire, SiO/Si, and h-BN.
View Article and Find Full Text PDFThe most efficient architecture for achieving high donor/acceptor interfacial area in organic photovoltaics (OPVs) would employ arrays of vertically interdigitated p- and n- type semiconductor nanopillars (NPs). Such morphology could have an advantage in bulk heterojunction systems; however, precise control of the dimension morphology in a crystalline, interpenetrating architecture has not yet been realized. Here we present a simple, yet facile, crystallization technique for the growth of vertically oriented NPs utilizing a modified thermal evaporation technique that hinges on a fast deposition rate, short substrate-source distance, and ballistic mass transport.
View Article and Find Full Text PDF