Publications by authors named "Timothy M Wick"

We have developed a novel multicomponent nano-hydroxyapatite-poly(D,L-lactide-co-glycolide)-collagen biomaterial (nHAP-PLGA-collagen) with mechanical properties similar to human cancellous bone. To demonstrate the bone forming capacity of nHAP-PLGA-collagen prior to in vivo experiments, nHAP-PLGA-collagen films and 3D porous scaffolds were seeded with human mesenchymal stem cells (hMSCs) to characterize cell proliferation and osteogenic differentiation. Over 21 days hMSCs seeded on 2D nHAP-PLGA-collagen films proliferate, form nodules, deposit mineral and express high alkaline phosphatase activity (ALP) indicating commitment of hMSCs towards osteogenic lineage.

View Article and Find Full Text PDF

We report nanothin temperature-responsive hydrogel films of poly(N-vinylcaprolactam) nanoparticles (νPVCL) with remarkably high loading capacity for topical drug delivery. Highly swollen (νPVCL) multilayer hydrogels, where n denotes the number of nanoparticle layers, are produced by layer-by-layer hydrogen-bonded assembly of core-shell PVCL-co-acrylic acid nanoparticles with linear PVPON followed by cross-linking of the acrylic acid shell with either ethylene diamine (EDA) or adipic acid dihydrazide (AAD). We demonstrate that a (νPVCL) film undergoes dramatic and reversible swelling up to 9 times its dry thickness at pH = 7.

View Article and Find Full Text PDF

Enhancing skin permeation is important for development of new transdermal drug delivery formulations. This is particularly relevant for non-steroidal anti-inflammatory drugs (NSAIDs). To address this, semisolid gel and solid hydrogel film formulations containing gellan gum as a gelling agent were developed and the effects of penetration enhancers (dimethyl sulfoxide, isopropyl alcohol and propylene glycol) on transport of the NSAID diclofenac sodium was quantified.

View Article and Find Full Text PDF

A bone graft is a complicated structure that provides mechanical support and biological signals that regulate bone growth, reconstruction, and repair. A single-component material is inadequate to provide a suitable combination of structural support and biological stimuli to promote bone regeneration. Multicomponent composite biomaterials lack adequate bonding among the components to prevent phase separation after implantation.

View Article and Find Full Text PDF

Coating stability is increasingly recognized as a concern impacting the long-term effectiveness of drug eluting stents (DES). In particular, unstable coatings have been brought into focus by a recently published report (Denardo et al 2012 J. Am.

View Article and Find Full Text PDF

Complications of sickle cell anaemia include vascular occlusion triggered by the adherence of sickle erythrocytes to endothelium in the postcapillary venules. Adherence can be promoted by inflammatory mediators that induce endothelial cell adhesion molecule expression and arrest flowing erythrocytes. The present study characterised the effect of histamine stimulation on the kinetics of sickle cell adherence to large vessel and microvascular endothelium under physiological flow.

View Article and Find Full Text PDF

Vascular endothelial cells (EC) are exposed to a complex biomechanical environment in vivo and are responsible for relaying important messages to the underlying tissue. EC and smooth muscle cells (SMC) communicate to regulate vascular development and function. In this work, a vascular perfusion bioreactor is used to grow tubular constructs seeded with EC and SMC under pulsatile shear stress in long-term co-culture to study the effects of EC on SMC function.

View Article and Find Full Text PDF

Venular microvascular circulation in patients with sickle cell anemia exhibits reduced and episodic blood flow. Sickle erythrocyte adhesion to postcapillary venule endothelium is postulated to initiate and propagate episodes of vasoocclusive pain. Hemodynamics likely mediate the adherence of sickle cells to endothelium, controlling delivery of potentially adherent erythrocytes and removal of loosely adherent erythrocytes on the endothelium.

View Article and Find Full Text PDF

A scaleable perfusion bioreactor has been developed for tissue engineering of small diameter arterial constructs. This modular bioreactor allows for dynamic sequential seeding of smooth muscle and endothelial cells, biomechanical stimulation of cells during culture, and monitoring of tissue growth and maturation. Bovine aortic smooth muscle and endothelial cells were seeded onto porous tubular poly(glycolic acid) nonwoven scaffolds and cultured in the bioreactor under pulsatile flow conditions for up to 25 days.

View Article and Find Full Text PDF

Cartilage is exposed to low oxygen tension in vivo, suggesting culture in a low-oxygen environment as a strategy to enhance matrix deposition in tissue-engineered cartilage in vitro. To assess the effects of oxygen tension on cartilage matrix accumulation, porous polylactic acid constructs were dynamically seeded in a concentric cylinder bioreactor with bovine chondrocytes and cultured for 3 weeks at either 20 or 5% oxygen tension. Robust chondrocyte proliferation and matrix deposition were achieved.

View Article and Find Full Text PDF

Adherence of sickle erythrocytes to endothelium in venules is thought to initiate or propagate vaso-occlusive episodes. Because of blood shear forces with normal microvascular flow, adherence in post-capillary venules requires binding via high-affinity receptor-mediated pathways. Microvascular flow in sickle patients is episodic, even in asymptomatic patients, so adherence may also occur at low shear not requiring high-affinity binding.

View Article and Find Full Text PDF

A concentric cylinder bioreactor has been developed to culture tissue engineered cartilage constructs under hydrodynamic loading. This bioreactor operates in a low shear stress environment, has a large growth area for construct production, allows for dynamic seeding of constructs, and provides for a uniform loading environment. Porous poly-lactic acid constructs, seeded dynamically in the bioreactor using isolated bovine chondrocytes, were cultured for 4 weeks at three seeding densities (60, 80, 100 x 10(6) cells per bioreactor) and three different shear stresses (imposed at 19, 38, and 76 rpm) to characterize the effect of chondrocyte density and hydrodynamic loading on construct growth.

View Article and Find Full Text PDF

Computational fluid dynamics (CFD) models to quantify momentum and mass transport under conditions of tissue growth will aid bioreactor design for development of tissue-engineered cartilage constructs. Fluent CFD models are used to calculate flow fields, shear stresses, and oxygen profiles around nonporous constructs simulating cartilage development in our concentric cylinder bioreactor. The shear stress distribution ranges from 1.

View Article and Find Full Text PDF

Under venular flow conditions, sickle cell adherence to endothelium is mediated by cell adhesion molecules and adhesive proteins associated with inflammation, coagulation, and endothelial perturbation. Periodic and reduced blood flow are observed in sickle microcirculation during hematologic steady state, suggesting that blood flow is compromised in sickle microcirculation. We tested the hypothesis that low blood flow enhances adherence by quantifying sickle cell adhesion to endothelium under venular flow (1.

View Article and Find Full Text PDF