Anthropogenically elevated CO (eCO) concentrations have been suggested to increase woody cover within tropical ecosystems through fertilization. The effect of eCO is built into Earth system models, although testing the relationship over long periods remains challenging. Here, we explore the relative importance of six drivers of vegetation change in western Africa over the past ~500,000 years (moisture availability, fire activity, mammalian herbivore density, temperature, temperature seasonality, CO) by coupling past environmental change data from Lake Bosumtwi (Ghana) with global data.
View Article and Find Full Text PDFSolar ultraviolet (UV) irradiance is a key driver of climatic and biotic change. Ultraviolet irradiance modulates stratospheric warming and ozone production, and influences the biosphere from ecosystem-level processes through to the largest scale patterns of diversification and extinction. Yet our understanding of ultraviolet irradiance is limited because no method has been validated to reconstruct its flux over timescales relevant to climatic or biotic processes.
View Article and Find Full Text PDFInteractions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28-15 kyr B.
View Article and Find Full Text PDFThe environmental backdrop to the evolution and spread of early Homo sapiens in East Africa is known mainly from isolated outcrops and distant marine sediment cores. Here we present results from new scientific drill cores from Lake Malawi, the first long and continuous, high-fidelity records of tropical climate change from the continent itself. Our record shows periods of severe aridity between 135 and 75 thousand years (kyr) ago, when the lake's water volume was reduced by at least 95%.
View Article and Find Full Text PDF