Publications by authors named "Timothy M Ritty"

Tumor-associated inflammation mediates the development of a systemic immunosuppressive milieu that is a major obstacle to effective treatment of cancer. Inflammation has been shown to promote the systemic expansion of immature myeloid cells which have been shown to exert immunosuppressive activity in laboratory models of cancer as well as cancer patients. Consequentially, significant effort is underway toward the development of therapies that decrease tumor-associated inflammation and immunosuppressive cells.

View Article and Find Full Text PDF

Although numerous genetic mutations and amplifications have been identified in pancreatic cancer, much of the molecular pathogenesis of the disease remains undefined. While proteomic and transcriptomic analyses have been utilized to probe and characterize pancreatic tumors, lipidomic analyses have not been applied to identify perturbations in pancreatic cancer patient samples. Thus, we utilized a mass spectrometry-based lipidomic approach, focused towards the sphingolipid class of lipids, to quantify changes in human pancreatic cancer tumor and plasma specimens.

View Article and Find Full Text PDF

Integrins are transmembrane receptors that can specifically bind extracellular matrix (ECM) proteins. Assembly of the ECM protein fibronectin into fibrils has been shown to be a cell-mediated process that requires integrins. Like fibronectin, fibrillin 1 is an ECM glycoprotein that can assemble into fibrils, but the role of integrins in fibril formation is not understood.

View Article and Find Full Text PDF

Osteosarcoma is a malignant neoplasm of mesenchymal origin that is presumed to arise from osteoblasts. Considered a rare tumor, approximately 1000 cases of osteosarcoma are diagnosed in the United States each year, and osteosarcoma of the foot is rarer still. Marfan syndrome (MFS) is a rare genetic disorder that affects 1 in 5000 individuals and is caused by mutations in the fibrillin 1 (FBN1) gene.

View Article and Find Full Text PDF

Fibrillins 1, 2 and 3 make up a family of genes that encode large, cysteine-rich extracellular matrix glycoproteins found in connective tissues, lung, blood vessels and other extensible tissues. Fibrillins 1 and 2 have both overlapping as well as separate distributions in human embryonic and adult tissues. Fibrillin-containing microfibrils are known to modulate morphogenetic events by proper targeting of growth factors to the extracellular matrix.

View Article and Find Full Text PDF

Human embryonic stem cells (hESCs) are characterized by their immortality and pluripotency. Human mesenchymal stem cells (hMSC), on the other hand, have limited self-renewal and differentiation capabilities. The underlying molecular differences that account for this characteristic self-renewal and plasticity are, however, poorly understood.

View Article and Find Full Text PDF

Development of the extracellular matrix is a critical feature of alveolar formation and actively involves pulmonary interstitial fibroblasts. The elastic fiber network is an interconnected system of load-bearing fibers that also influences the behavior of adjacent cells, particularly the interstitial lung fibroblasts (LF). We hypothesized that discrete domains of fibrillins-1 and -2 interact with LF integrins and direct their migration in the presence of platelet-derived growth factor (PDGF)-A.

View Article and Find Full Text PDF

Insertion site injuries of the flexor digitorum profundus (FDP) tendon often present for delayed treatment. Apart from gross observations made at the time of surgery, the changes that occur in the flexor tendon stump during the interval from injury to repair are unknown. These changes may include tendon softening and loss of viability, which may contribute to the poor outcomes observed clinically and experimentally.

View Article and Find Full Text PDF

Using yeast two-hybrid, ligand blotting, and solid phase binding assays, we have shown that microfibril-associated glycoprotein-1 (MAGP-1) interacts with the 8-cysteine motif of fibrillin-2 encoded by exon 24. Binding to this sequence was demonstrated for full-length MAGP-1 as well as for the MAGP-1 matrix-binding domain encoded by exons 7 and 8. The matrix-binding domain, but not the full-length protein, also bound to regions of fibrillin-2 defined by exons 16 and 17, exon 20, and exons 23 and 24.

View Article and Find Full Text PDF

Within tendon, between collagen fascicles, cells are organized in linear arrays surrounded by a specialized environment of extracellular matrix (ECM) proteins that are largely unidentified. Our goal was to identify interfascicular, pericellular ECM components and provide additional resolution to the organization of the pericellular matrix. To this end, we employed a combination of enzymatic digestion, mechanical disruption, and differential sedimentation to demonstrate for the first time that it possible to liberate living linear tendon cell arrays from whole tendon.

View Article and Find Full Text PDF

Fibrillin-1 and -2 are large modular extracellular matrix glycoproteins found in many vertebrate organ systems and are known to be key components of the elastic fibre. In the present study, we identify a new heparin-binding region in fibrillin-2 between exons 18 and 24. Additionally, we have narrowed the location of heparin-binding activity previously identified in fibrillin-1 to the last 17 residues of the mature proteolytically processed protein.

View Article and Find Full Text PDF

Cells that carry out wound healing must be able to perform catabolic as well as anabolic functions. As the tendon is a tissue rich in extracellular matrix (ECM) proteins, we hypothesized that cells which participate in tendon healing should be able to produce proteases that would allow the remodeling of such a tissue. To this end, we assessed the ability of endotenon cells isolated from canine flexor digitorum profundus tendon and from surrounding parietal sheath to produce the gelatinases MMP-2 and MMP-9.

View Article and Find Full Text PDF

The elastic fiber is known to be an important component of skin, lung, and vasculature. Much less is known about the distribution of elastin and elastic fiber-related proteins in connective tissues, yet genetic defects of elastic fiber constituents can lead to deficiencies in these tissues. For the first time, we determine the distribution of elastin, fibrillins 1 and 2, and microfibril-associated glycoproteins (MAGPs) 1 and 2 in the flexor digitorum profundus (FDP) tendon.

View Article and Find Full Text PDF