Publications by authors named "Timothy M Gomez"

Photoreceptors (PRs) are the primary visual sensory cells, and their loss leads to blindness that is currently incurable. Although cell replacement therapy holds promise, success is hindered by our limited understanding of PR axon growth during development and regeneration. Here, we generate retinal organoids from human pluripotent stem cells to study the mechanisms of PR process extension.

View Article and Find Full Text PDF

Growth cones at the tips of extending axons navigate through developing organisms by probing extracellular cues, which guide them through intermediate steps and onto final synaptic target sites. Widespread focus on a few guidance cue families has historically overshadowed potentially crucial roles of less well-studied growth factors in axon guidance. In fact, recent evidence suggests that a variety of growth factors have the ability to guide axons, affecting the targeting and morphogenesis of growth cones This review summarizes experiments identifying responses and signaling mechanisms underlying axon morphogenesis caused by underappreciated growth factors.

View Article and Find Full Text PDF

Patients with Tuberous Sclerosis Complex (TSC) show aberrant wiring of neuronal connections formed during development which may contribute to symptoms of TSC, such as intellectual disabilities, autism, and epilepsy. Yet models examining the molecular basis for axonal guidance defects in developing human neurons have not been developed. Here, we generate human induced pluripotent stem cell (hiPSC) lines from a patient with TSC and genetically engineer counterparts and isogenic controls.

View Article and Find Full Text PDF

The assembly of neuronal circuits during development depends on guidance of axonal growth cones by molecular cues deposited in their environment. While a number of families of axon guidance molecules have been identified and reviewed, important and diverse activities of traditional growth factors are emerging. Besides clear and well recognized roles in the regulation of cell division, differentiation and survival, new research shows later phase roles for a number of growth factors in promoting neuronal migration, axon guidance and synapse formation throughout the nervous system.

View Article and Find Full Text PDF

The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly.

View Article and Find Full Text PDF

The microenvironment of developing neurons is a dynamic landscape of both chemical and mechanical cues that regulate cell proliferation, differentiation, migration, and axon extension. While the regulatory roles of chemical ligands in neuronal morphogenesis have been described, little is known about how mechanical forces influence neurite development. Here, we tested how substratum elasticity regulates neurite development of human forebrain (hFB) neurons and human motor neurons (hMNs), two populations of neurons that naturally extend axons into distinct elastic environments.

View Article and Find Full Text PDF
Article Synopsis
  • * Virus-induced restoration of SNPH in dendrites of SNPH-KO mice heightens sensitivity to excitotoxic damage following stimulation of climbing fibers.
  • * Overexpressing SNPH in dendrites is shown to harm neuron survival by causing NMDA excitotoxicity, disrupting mitochondrial calcium handling, and hindering mitochondrial quality control processes, indicating that blocking SNPH from entering dendrites may help address neurodegeneration.
View Article and Find Full Text PDF

Guidance of axons to their proper synaptic target sites requires spatially and temporally precise modulation of biochemical signals within growth cones. Ionic calcium (Ca) is an essential signal for axon guidance that mediates opposing effects on growth cone motility. The diverse effects of Ca arise from the precise localization of Ca signals into microdomains containing specific Ca effectors.

View Article and Find Full Text PDF

Local protein synthesis directs growth cone turning of nascent axons, but mechanisms governing this process within compact, largely autonomous microenvironments remain poorly understood. In this issue, Wang et al. (2016.

View Article and Find Full Text PDF

Axon extension, guidance and tissue invasion share many similarities to normal cell migration and cancer cell metastasis. Proper cell and growth cone migration requires tightly regulated adhesion complex assembly and detachment from the extracellular matrix (ECM). In addition, many cell types actively remodel the ECM using matrix metalloproteases (MMPs) to control tissue invasion and cell dispersal.

View Article and Find Full Text PDF

Unlabelled: Growth cones interact with the extracellular matrix (ECM) through integrin receptors at adhesion sites termed point contacts. Point contact adhesions link ECM proteins to the actin cytoskeleton through numerous adaptor and signaling proteins. One presumed function of growth cone point contacts is to restrain or "clutch" myosin-II-based filamentous actin (F-actin) retrograde flow (RF) to promote leading edge membrane protrusion.

View Article and Find Full Text PDF

Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions.

View Article and Find Full Text PDF

Invadopodia and podosomes, collectively referred to as invadosomes, are F-actin-rich basal protrusions of cells that provide sites of attachment to and degradation of the extracellular matrix. Invadosomes promote the invasion of cells, ranging from metastatic cancer cells to immune cells, into tissue. Here, we show that neuronal growth cones form protrusions that share molecular, structural and functional characteristics of invadosomes.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and is closely linked with autism. The genetic basis of FXS is an expansion of CGG repeats in the 5'-untranslated region of the FMR1 gene on the X chromosome leading to the loss of expression of the fragile X mental retardation protein (FMRP). The cause of FXS has been known for over 20 years, yet the full molecular and cellular consequences of this mutation remain unclear.

View Article and Find Full Text PDF

Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces.

View Article and Find Full Text PDF

Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family of proteins, plays important roles in a variety of cellular events by regulating both membrane and actin dynamics. In many cell types, CIP4 functions in vesicle formation, endocytosis and membrane tubulation. However, recent data indicate that CIP4 is also involved in protrusion in some cell types, including cancer cells (lamellipodia and invadopodia) and neurons (ribbed lamellipodia and veils).

View Article and Find Full Text PDF

The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth.

View Article and Find Full Text PDF

Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients.

View Article and Find Full Text PDF

There is biochemical, imaging and functional evidence that Rho GTPase signaling is a crucial regulator of actin-based structures such as lamellipodia and filopodia. However, although Rho GTPases are believed to serve similar functions in growth cones, the spatiotemporal dynamics of Rho GTPase signaling has not been examined in living growth cones in response to known axon guidance cues. Here we provide the first measurements of Cdc42 activity in living growth cones acutely stimulated with both growth-promoting and growth-inhibiting axon-guidance cues.

View Article and Find Full Text PDF

The ability of extending axons to navigate using combinations of extracellular cues is essential for proper neural network formation. One intracellular signaling molecule that integrates convergent signals from both extracellular matrix (ECM) proteins and growth factors is focal adhesion kinase (FAK). Analysis of FAK function shows that it influences a variety of cellular activities, including cell motility, proliferation, and differentiation.

View Article and Find Full Text PDF

Axon outgrowth and pathfinding occurs through a complex series of interacting biochemical signaling pathways that regulate the motility of neuronal growth cones. Over the past 30 years, Paul Letourneau and his students have explored the molecular basis of growth cone motility and have contributed immensely to this field. In celebration of his 65th birthday, this essay is written in gratitude for Paul's many contributions and training.

View Article and Find Full Text PDF

Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion.

View Article and Find Full Text PDF

Xenopus laevis provides a robust model system to study cellular signaling and downstream processes during development both in vitro and in vivo. Intracellular signals must function within highly restricted spatial and temporal domains to activate specific downstream targets and cellular processes. Combining the versatility of developing Xenopus neurons with advances in fluorescent protein biosensors and imaging technologies has allowed many dynamic cellular processes to be visualized.

View Article and Find Full Text PDF

We have investigated the role of Vav2, a reported Rac1/Cdc42 GEF, on the development of Xenopus spinal neurons in vitro and in vivo. Both gain and loss of Vav2 function inhibited the rate neurite extension on laminin (LN), while only GFP-Vav2 over-expression enhanced process formation and branching. Vav2 over-expression protected neurons from RhoA-mediated growth cone collapse, similar to constitutively active Rac1, suggesting that Vav2 activates Rac1 in spinal neurons.

View Article and Find Full Text PDF

Adhesion controls growth cone motility, yet the effects of axon guidance cues on adhesion site dynamics are poorly understood. Here we show that ephrin-A1 reduces retinal ganglion cell (RGC) axon outgrowth by stabilizing existing adhesions and inhibiting new adhesion assembly. Ephrin-A1 activates focal adhesion kinase (FAK) in an integrin- and Src-dependent manner and the effects of ephrin-A1 on growth cone motility require FAK activation.

View Article and Find Full Text PDF