Publications by authors named "Timothy Luciani"

Purpose: To determine whether patient similarity in terms of head and neck cancer spread through lymph nodes correlates significantly with radiation-associated toxicity.

Materials And Methods: 582 head and neck cancer patients received radiotherapy for oropharyngeal cancer (OPC) and had non-metastatic affected lymph nodes in the head and neck. Affected lymph nodes were segmented from pretreatment contrast-enhanced tomography scans and categorized according to consensus guidelines.

View Article and Find Full Text PDF

Visualization research often seeks designs that first establish an overview of the data, in accordance to the information seeking mantra: "Overview first, zoom and filter, then details on demand". However, in computational fluid dynamics (CFD), as well as in other domains, there are many situations where such a spatial overview is not relevant or practical for users, for example when the experts already have a good mental overview of the data, or when an analysis of a large overall structure may not be related to the specific, information-driven tasks of users. Using scientific workflow theory and, as a vehicle, the problem of viscous finger evolution, we advocate an alternative model that allows domain experts to explore features of interest first, then explore the context around those features, and finally move to a potentially unfamiliar summarization overview.

View Article and Find Full Text PDF

Background: Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes.

Results: We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks.

View Article and Find Full Text PDF

Background: Knowledge of the 3D structure and functionality of proteins can lead to insight into the associated cellular processes, speed up the creation of pharmaceutical products, and develop drugs that are more effective in combating disease.

Methods: We present the design and implementation of a visual mining and analysis tool to help identify protein mutations across a family of structural models and to help discover the effect of these mutations on protein function. We integrate 3D structure and sequence information in a common visual interface; multiple linked views and a computational backbone allow comparison at the molecular and atomic levels, while a novel trend-image visual abstraction allows for the sorting and mining of large collections of sequences and of their residues.

View Article and Find Full Text PDF

We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time.

View Article and Find Full Text PDF