Huntsman-Merrimack MIRALON carbon nanotubes (CNTs) are a novel, highly entangled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties.
View Article and Find Full Text PDFVibrational spectroscopy techniques have evolved to measure gases, liquids, and solids at surfaces and interfaces. In the field of surface-sensitive vibrational spectroscopy, infrared spectroscopy measures the adsorption on surfaces and changes from reactions. Previous polarized modulated-infrared reflection-absorption spectroscopy (PM-IRRAS) measurements at the gas/solid interface were developed to observe catalytic reactions near reaction conditions.
View Article and Find Full Text PDFDirect recycling of Li-ion batteries (LIBs) reclaims electrode materials using physical separation followed by materials' rejuvenation processes. The cathode composites in LIBs contain both carbon black and PVDF binders in its chemistry. For the rejuvenation process to work, an ability to remove these impurities is desirable.
View Article and Find Full Text PDFIron oxide nanomaterials participate in redox processes that give them ideal properties for their use as earth-abundant catalysts. Fabricating nanocatalysts for such applications requires detailed knowledge of the deposition and growth. We report the spontaneous deposition of iron oxide nanoparticles on HOPG in defect areas and on step edges from a metal precursor solution.
View Article and Find Full Text PDFSmart adhesive hydrogels containing 10 mol% each of dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (APBA) were polymerized in situ onto polydimethylsiloxane (PMDS) micropillars with different aspect ratios (AR = 0.4, 1 and 2). Using Johnson-Kendall-Roberts (JKR) contact mechanics tests, the adhesive-coated pillars demonstrated strong wet adhesion at pH 3 (Wadh = 420 mJ m-2) and can be repeatedly deactivated and reactivated by changing the pH value (pH 9 and 3, respectively).
View Article and Find Full Text PDFDehydrative cyclocondensation processes for semiconductor surface modification can be generally suggested on the basis of well-known condensation schemes; however, in practice this approach for organic functionalization of semiconductors has never been investigated. Here we report the modification of hydrogen-terminated silicon surfaces by cyclocondensation. The cyclocondensation reactions of nitrobenzene with hydrogen-terminated Si(100) and Si(111) surfaces are investigated and paralleled with selected cycloaddition reactions of nitro- and nitrosobenzene with Si(100)-2x1.
View Article and Find Full Text PDF