The mechanism of the Brønsted acid-catalyzed aza-Darzens reaction is explored by charting the stereochemical outcome of the triflic acid-promoted conversion of trans-triazolines to cis-aziridines. These experiments are consistent with the intermediacy of an α-diazonium-β-amino ester intermediate.
View Article and Find Full Text PDFA new means to activate diazoalkanes has been discovered and applied broadly over the past few years. Brønsted acids, both achiral and chiral, have been used to promote the formation of carbon-carbon and carbon-heteroatom bonds with a growing number of diazoalkane derivatives. Aside from their straightforward ability to build structural and stereochemical complexity in innovative new ways, these transformations are remarkable owing to their ability to skirt competitive diazo protonation--a reaction that has long been used to prepare esters efficiently and cleanly from carboxylic acids.
View Article and Find Full Text PDFA novel series of HIV-1 integrase inhibitors were identified from a 100 member (4R(1) x 5R(2) x 5R(3)) library of pyrrolidinedione amides. A solid-phase route was developed which facilitates the simultaneous variation at R(1), R(2), and R(3) of the pyrrolidinedione scaffold. The resulting library samples were assayed for HIV-1 integrase activity and analyzed to determine the R(1), R(2), and R(3) reagent contributions towards the activity.
View Article and Find Full Text PDFChem Commun (Camb)
November 2009
A novel alpha-diazo imide reagent and its activation by strong Brønsted acid is shown to produce the product of a syn-glycolate Mannich transform with high diastereoselection.
View Article and Find Full Text PDF