This manuscript describes the development and operation of an apparatus for the measurement of steady-state and transient gas permeation through different types of solid materials with varying geometries. It is capable of operation from 293 K to 673 K and could theoretically be used with any non-corrosive gas or a mix of gases, although only hydrogen isotopes are used in the current study. A quadrupole mass spectrometer is used to measure permeation fluxes as low as 10 molecules/s.
View Article and Find Full Text PDFAdding nano-sized fillers to epoxy has proven to be an effective method for improving dielectric breakdown strength (DBS). Evidence suggests that dispersion state, as well as chemistry at the filler-matrix interface can play a crucial role in property enhancement. Herein we investigate the contribution of both filler dispersion and surface chemistry on the AC dielectric breakdown strength of silica-epoxy nanocomposites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2014
One key to optimizing the performance of polymer nanocomposites for high-tech applications is surface ligand engineering of the nanofiller, which has been used to either tune the nanofiller morphology or introduce additional functionalities. Ligand engineering can be relatively simple such as a single population of short molecules on the nanoparticle surface designed for matrix compatibility. It can also have complexity that includes bimodal (or multimodal) populations of ligands that enable relatively independent control of enthalpic and entropic interactions between the nanofiller and matrix as well as introduce additional functionality and dynamic control.
View Article and Find Full Text PDF