Publications by authors named "Timothy Kratz"

Lentic ecosystems are important agents of local and global carbon cycling, but their contribution varies along gradients of dissolved organic matter (DOM) and productivity. We investigated how contrasting summer and autumn precipitation can shape annual and inter-annual variation in ecosystem carbon (C) flux (gross primary production (GPP), ecosystem respiration (ER), and CO efflux) in two subtropical lakes differing substantially in trophic state and water color. Instrumented buoys recorded time series of free-water DO, terrestrial DOM (tDOM), chlorophyll a, water temperature profiles, and meteorological measurements over five years (2009-2011 and 2014-2015).

View Article and Find Full Text PDF

Disturbances act as powerful structuring forces on ecosystems. To ask whether environmental microbial communities have capacity to recover after a large disturbance event, we conducted a whole-ecosystem manipulation, during which we imposed an intense disturbance on freshwater microbial communities by artificially mixing a temperate lake during peak summer thermal stratification. We employed environmental sensors and water chemistry analyses to evaluate the physical and chemical responses of the lake, and bar-coded 16S ribosomal RNA gene pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA) to assess the bacterial community responses.

View Article and Find Full Text PDF

For lake microbes, water column mixing acts as a disturbance because it homogenizes thermal and chemical gradients known to define the distributions of microbial taxa. Our first objective was to isolate hypothesized drivers of lake bacterial response to water column mixing. To accomplish this, we designed an enclosure experiment with three treatments to independently test key biogeochemical changes induced by mixing: oxygen addition to the hypolimnion, nutrient addition to the epilimnion, and full water column mixing.

View Article and Find Full Text PDF

Humans have continuously interacted with natural systems, resulting in the formation and development of coupled human and natural systems (CHANS). Recent studies reveal the complexity of organizational, spatial, and temporal couplings of CHANS. These couplings have evolved from direct to more indirect interactions, from adjacent to more distant linkages, from local to global scales, and from simple to complex patterns and processes.

View Article and Find Full Text PDF

Integrated studies of coupled human and natural systems reveal new and complex patterns and processes not evident when studied by social or natural scientists separately. Synthesis of six case studies from around the world shows that couplings between human and natural systems vary across space, time, and organizational units. They also exhibit nonlinear dynamics with thresholds, reciprocal feedback loops, time lags, resilience, heterogeneity, and surprises.

View Article and Find Full Text PDF