Local synchronization, both prolonged and transient, of oscillatory neuronal behavior in cortical networks plays a fundamental role in many aspects of perception and cognition. Here we study networks of Hindmarsh-Rose neurons with a new type of adaptive coupling, and show that these networks naturally produce both permanent and transient synchronization of local clusters of neurons. These deterministic systems exhibit complex dynamics with 1/fη power spectra, which appears to be a consequence of a novel form of self-organized criticality.
View Article and Find Full Text PDFCooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner's dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks.
View Article and Find Full Text PDFIn evolutionary game theory the War of Attrition game is intended to model animal contests which are decided by non-aggressive behavior, such as the length of time that a participant will persist in the contest. The classical War of Attrition game assumes that no errors are made in the implementation of an animal׳s strategy. However, it is inevitable in reality that such errors must sometimes occur.
View Article and Find Full Text PDFNetwork analysis has proved to be a valuable tool for studying the behavioural patterns of complex social animals. Often such studies either do not distinguish between different behavioural states of the organisms or simply focus attention on a single behavioural state to the exclusion of all others. In either of these approaches it is impossible to ascertain how the behavioural patterns of individuals depend on the type of activity they are engaged in.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
The traveler's dilemma game and the minimum-effort coordination game are social dilemmas that have received significant attention resulting from the fact that the predictions of classical game theory are inconsistent with the results found when the games are studied experimentally. Moreover, both the traveler's dilemma and the minimum-effort coordination games have potentially important applications in evolutionary biology. Interestingly, standard deterministic evolutionary game theory, as represented by the replicator dynamics in a well-mixed population, is also inadequate to account for the behavior observed in these games.
View Article and Find Full Text PDFThe Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games.
View Article and Find Full Text PDFMany complex systems can be described by networks, in which the constituent components are represented by vertices and the connections between the components are represented by edges between the corresponding vertices. A fundamental issue concerning complex networked systems is the robustness of the overall system to the failure of its constituent parts. Since the degree to which a networked system continues to function, as its component parts are degraded, typically depends on the integrity of the underlying network, the question of system robustness can be addressed by analyzing how the network structure changes as vertices are removed.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
Spatial pattern formation is a key feature of many natural systems in physics, chemistry, and biology. The essential theoretical issue in understanding pattern formation is to explain how a spatially homogeneous initial state can undergo spontaneous symmetry breaking leading to a stable spatial pattern. This problem is most commonly studied using partial differential equations to model a reaction-diffusion system of the type introduced by Turing.
View Article and Find Full Text PDFThe rock-paper-scissors game-which is characterized by three strategies R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and R excludes S-serves as a simple prototype for studying more complex non-transitive systems. For well-mixed systems where interactions result in fitness reductions of the losers exceeding fitness gains of the winners, classical theory predicts that two strategies go extinct. The effects of spatial heterogeneity and dispersal rates on this outcome are analyzed using a general framework for evolutionary games in patchy landscapes.
View Article and Find Full Text PDFUnderstanding the evolutionary origin and persistence of cooperative behavior is a fundamental biological problem. The standard "prisoner's dilemma," which is the most widely adopted framework for studying the evolution of cooperation through reciprocal altruism between unrelated individuals, does not allow for varying degrees of cooperation. Here we study the continuous iterated prisoner's dilemma, in which cooperative investments can vary continuously in each round.
View Article and Find Full Text PDFPublic goods are the key features of all human societies and are also important in many animal societies. Collaborative hunting and collective defence are but two examples of public goods that have played a crucial role in the development of human societies and still play an important role in many animal societies. Public goods allow societies composed largely of cooperators to outperform societies composed mainly of non-cooperators.
View Article and Find Full Text PDFMuch of the work on extinction events has focused on external perturbations of ecosystems, such as climatic change, or anthropogenic factors. Extinction, however, can also be driven by endogenous factors, such as the ecological interactions between species in an ecosystem. Here we show that endogenously driven extinction events can have a scale-free distribution in simple spatially structured host-parasitoid systems.
View Article and Find Full Text PDFThe evolution of cooperation by direct reciprocity requires that individuals recognize their present partner and remember the outcome of their last encounter with that specific partner. Direct reciprocity thus requires advanced cognitive abilities. Here, we demonstrate that if individuals repeatedly interact within small groups with different partners in a two person Prisoner's Dilemma, cooperation can emerge and also be maintained in the absence of such cognitive capabilities.
View Article and Find Full Text PDFTo date, the majority of theoretical models describing the dynamics of infectious diseases in vivo are based on the assumption of well-mixed virus and cell populations. Because many infections take place in solid tissues, spatially structured models represent an important step forward in understanding what happens when the assumption of well-mixed populations is relaxed. Here, we explore models of virus and virus-immune dynamics where dispersal of virus and immune effector cells was constrained to occur locally.
View Article and Find Full Text PDFCoexistence of cooperators and defectors is common in nature, yet the evolutionary origin of such social diversification is unclear. Many models have been studied on the basis of the assumption that benefits of cooperative acts only accrue to others. Here, we analyze the continuous snowdrift game, in which cooperative investments are costly but yield benefits to others as well as to the cooperator.
View Article and Find Full Text PDFThe Prisoner's Dilemma, a two-person game in which the players can either cooperate or defect, is a common paradigm for studying the evolution of cooperation. In real situations cooperation is almost never all or nothing. This observation is the motivation for the Continuous Prisoner's Dilemma, in which individuals exhibit variable degrees of cooperation.
View Article and Find Full Text PDFStepping-stone models for the ecological dynamics of metapopulations are often used to address general questions about the effects of spatial structure on the nature and complexity of population fluctuations. Such models describe an ensemble of local and spatially isolated habitat patches that are connected through dispersal. Reproduction and hence the dynamics in a given local population depend on the density of that local population, and a fraction of every local population disperses to neighboring patches.
View Article and Find Full Text PDF