Pulsed Dipolar ESR Spectroscopy (PDS) is a uniquely powerful technique to characterize the structural property of intrinsically disordered proteins (IDPs) and polymers and the conformational evolution of IDPs and polymers, e.g. during assembly, by offering the probability distribution of segment end-to-end distances.
View Article and Find Full Text PDFWe present a fully automated cryogenic sample insertion and ejection system for use with low-temperature EPR probes. We show how the system can be implemented on a conventional EPR spectrometer and that ejection and insertion is reliably possible at temperatures down to 10 K. Furthermore, we investigate the glass properties of a 0.
View Article and Find Full Text PDFAs science and technology rapidly progress, it becomes increasingly important to understand how individuals comprehend expository technical texts that explain these advances. This study examined differences in individual readers' technical comprehension performance and differences among texts, using functional brain imaging to measure regional brain activity while students read passages on technical topics and then took a comprehension test. Better comprehension of the technical passages was related to higher activation in regions of the left inferior frontal gyrus, left superior parietal lobe, bilateral dorsolateral prefrontal cortex, and bilateral hippocampus.
View Article and Find Full Text PDFIntravenous ketamine is posited to rapidly reverse depression by rapidly enhancing neuroplasticity. In human patients, we quantified gray matter microstructural changes on a rapid (24-h) timescale within key regions where neuroplasticity enhancements post-ketamine have been implicated in animal models. In this study, 98 unipolar depressed adults who failed at least one antidepressant medication were randomized 2:1 to a single infusion of intravenous ketamine (0.
View Article and Find Full Text PDFThe majority of low-field Overhauser dynamic nuclear polarization (ODNP) experiments reported so far have been 1D NMR experiments to study molecular dynamics and in particular hydration dynamics. In this work, we demonstrate the application of ODNP-enhanced 2D J-resolved (JRES) spectroscopy to improve spectral resolution beyond the limit imposed by the line broadening introduced by the paramagnetic polarizing agent. Using this approach, we are able to separate the overlapping multiplets of ethyl crotonate into a second dimension and clearly identify each chemical site individually.
View Article and Find Full Text PDFWe introduce a powerful, widely applicable approach to characterizing polymer conformational distributions, specifically the end-to-end distance distributions, (), accessed through double electron-electron resonance (DEER) spectroscopy in conjunction with molecular dynamics (MD) simulations. The technique is demonstrated on one of the most widely used synthetic, disordered, water-soluble polymers: poly(ethylene oxide) (PEO). Despite its widespread importance, no systematic experimental characterization of PEO's conformational landscape exists.
View Article and Find Full Text PDFThe usual understanding in polymer electrolyte design is that an increase in the polymer dielectric constant results in reduced ion aggregation and therefore increased ionic conductivity. We demonstrate here that in a class of polymers with extensive metal-ligand coordination and tunable dielectric properties, the extent of ionic aggregation is delinked from the ionic conductivity. The polymer systems considered here comprise ether, butadiene, and siloxane backbones with grafted imidazole side-chains, with dissolved Li, Cu, or Zn salts.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) has gained large interest due to its ability to increase signal intensities in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. Currently, DNP is typically used to enhance high-field, solid-state NMR experiments. However, the method is also capable of dramatically increasing the observed signal intensities in solution-state NMR spectroscopy.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is currently viewed as a disorder of cortical systems connectivity, with a heavy emphasis being on the structural integrity of white matter tracts. However, the majority of the literature to date has focused on children with ASD. Understanding the integrity of white matter tracts in adults may help reveal the nature of ASD pathology in adulthood and the potential contributors to cognitive impairment.
View Article and Find Full Text PDFThe aggregation of the human tau protein into neurofibrillary tangles is directly diagnostic of many neurodegenerative conditions termed tauopathies. The species, factors and events that are responsible for the initiation and propagation of tau aggregation are not clearly established, even in a simplified and artificial system. This motivates the mechanistic study of aggregation of recombinant tau from soluble to fibrillar forms, for which polyanionic cofactors are the most commonly used external inducer.
View Article and Find Full Text PDFBackground: Schizophrenia and autism share many behavioral and neurological similarities, including altered white matter tract structure. However, because schizophrenia and autism are rarely compared directly, it is difficult to establish whether white matter abnormalities are disorder-specific or are common across these disorders that share some symptomatology.
Methods: In the current study, we compared white matter water diffusion using tensor imaging in 25 adults with autism, 15 adults with schizophrenia, all with IQ scores above 88, and 19 neurotypical adults.
The critical role of the hippocampus in human learning has been illuminated by neuroimaging studies that increasingly improve the detail with which hippocampal function is understood. However, the hippocampal information developed with different types of imaging technologies is seldom integrated within a single investigation of the neural changes that occur during learning. Here, we show three different ways in which a small hippocampal region changes as the structures and names of a set of organic compounds are being learned, reflecting changes at the microstructural, informational, and cortical network levels.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Amyloid fibrils are cross-β-rich aggregates that are exceptionally stable forms of protein assembly. Accumulation of tau amyloid fibrils is involved in many neurodegenerative diseases, including Alzheimer's disease (AD). Heparin-induced aggregates have been widely used and assumed to be a good tau amyloid fibril model for most biophysical studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2018
An in-depth knowledge of the interaction of water with amorphous silica is critical to fundamental studies of interfacial hydration water, as well as to industrial processes such as catalysis, nanofabrication, and chromatography. Silica has a tunable surface comprising hydrophilic silanol groups and moderately hydrophobic siloxane groups that can be interchanged through thermal and chemical treatments. Despite extensive studies of silica surfaces, the influence of surface hydrophilicity and chemical topology on the molecular properties of interfacial water is not well understood.
View Article and Find Full Text PDFAmyloid fiber-forming proteins are predominantly intrinsically disordered proteins (IDPs). The protein tau, present mostly in neurons, is no exception. There is a significant interest in the study of tau protein aggregation mechanisms, given the direct correlation between the deposit of β-sheet structured neurofibrillary tangles made of tau and pathology in several neurodegenerative diseases, including Alzheimer's disease.
View Article and Find Full Text PDFWater within and surrounding the structure of a biological system adopts context-specific dynamics that mediate virtually all of the events involved in the inner workings of a cell. These events range from protein folding and molecular recognition to the formation of hierarchical structures. Water dynamics are mediated by the chemistry and geometry of interfaces where water and biomolecules meet.
View Article and Find Full Text PDFBackground: Theory-of-mind (ToM), the ability to infer people's thoughts and feelings, is a pivotal skill in effective social interactions. Individuals with autism spectrum disorders (ASD) have been found to have altered ToM skills, which significantly impacts the quality of their social interactions. Neuroimaging studies have reported altered activation of the ToM cortical network, especially in adults with autism, yet little is known about the brain responses underlying ToM in younger individuals with ASD.
View Article and Find Full Text PDFThe necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse.
View Article and Find Full Text PDFRecent findings with both animals and humans suggest that decreases in microscopic movements of water in the hippocampus reflect short-term neuroplasticity resulting from learning. Here we examine whether such neuroplastic structural changes concurrently alter the functional connectivity between hippocampus and other regions involved in learning. We collected both diffusion-weighted images and fMRI data before and after humans performed a 45min spatial route-learning task.
View Article and Find Full Text PDFBrain activation associated with normal and speeded comprehension of expository texts on familiar and unfamiliar topics was investigated in reading and listening. The goal was to determine how brain activation and the comprehension processes it reflects are modulated by comprehension speed and topic familiarity. Passages on more familiar topics differentially activated a set of areas in the anterior temporal lobe and medial frontal gyrus, areas often associated with text-level integration processes, which we interpret to reflect integration of previous knowledge with the passage content.
View Article and Find Full Text PDFAutism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism.
View Article and Find Full Text PDFBehavioral studies have documented a relative advantage in some aspects of visuospatial cognition in autism although it is not consistently found in higher functioning individuals with autism. The purpose of this functional neuroimaging study was to examine the neural activity in high functioning individuals with autism while they performed a block design task that systematically varied with regard to whether a global pattern was present. Participants were 14 adults with high-functioning autism and 14 age and IQ matched typical controls.
View Article and Find Full Text PDFWe present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range.
View Article and Find Full Text PDFComparison of brain function between children and adults with autism provides an understanding of the effects of the disorder and associated maturational differences on language processing. Functional imaging (functional magnetic resonance imaging) was used to examine brain activation and cortical synchronization during the processing of literal and ironic texts in 15 children with autism, 14 children with typical development, 13 adults with autism, and 12 adult controls. Both the children and adults with autism had lower functional connectivity (synchronization of brain activity among activated areas) than their age and ability comparison group in the left hemisphere language network during irony processing, and neither autism group had an increase in functional connectivity in response to increased task demands.
View Article and Find Full Text PDF