A detailed analysis of intra-particle volumes and layer thicknesses and their effect on the diffusion of solutes in hydrophilic interaction liquid chromatography (HILIC) was made. Pycnometric measurements and the retention volume of deuterated mobile phase constituents (water and acetonitrile) were used to estimate the void volume inside the column, including not only the volume of the mobile phase but also part of the enriched water solvent acting as the stationary phase in HILIC. The mobile phase (hold-up) volume accessible to non-retained components was estimated using a homologous series approach.
View Article and Find Full Text PDFThe improvement of supercritical fluid chromatography (SFC) instrumentation enhanced its reliability and utility over the past decade. The further development of high speed and high resolution separations is however obstructed by the lack of accurate models for axial dispersion in SFC. This work is a first step to tackle this by developing more reliable methods to measure molecular (D) and longitudinal diffusion (D) in SFC, as these affect all aspects of separation efficiency.
View Article and Find Full Text PDFDiffusion data are essential for adequate analysis of the kinetic separation performance of any chromatographic system. Unfortunately, for Supercritical Fluid Chromatography (SFC), very little data is available of the diffusion coefficients in mobile phases typically used in contemporary methods, i.e.
View Article and Find Full Text PDF