This report describes an investigation into the coordination chemistry of trivalent lanthanides in solution and the solid state with acyclic and preorganized bicyclic malonamide ligands. Two experimental investigations were performed: solution binding affinities were determined through single-phase spectrophotometric titrations and the extent of conformational change upon binding was investigated with single-crystal X-ray crystallography. Both experimental methods compare the bicyclic malonamide (BMA), which is designed to be preorganized for binding trivalent lanthanides, to an analogous acyclic malonamide.
View Article and Find Full Text PDFThe synthesis of unsymmetrical (Z)-1-alkyl-3-(2-iodovinyl)-2-phenyl-1-cyclopropenes (R=Me (8 a), Et (8 b), iPr (8 c), and tBu (8 d)) and their reactions with Vaska's complex [Ir(CO)Cl(PPh3)2] and its trimethylphosphine analogue [Ir(CO)Cl(PMe3)2] were investigated. Iridabenzvalene (13/20), iridabenzene (14/21), and/or eta(5)-cyclopentadienyliridium complexes (15/22) were obtained in modest yields and were fully characterized by spectroscopic means. X-ray structural data was secured for iridabenzvalene 13 d and iridabenzenes 14 a,b,d.
View Article and Find Full Text PDFA new route to substituted 2-phenyl-2H-indazoles through the cyclization of (2-ethynylphenyl)phenyldiazenes is presented. A coarctate reaction pathway forms the isoindazole carbene under neutral conditions, at moderate temperatures, and without the requirement of a carbene stabilizer. A wide variety of previously unknown diazene precursors was synthesized and cyclized.
View Article and Find Full Text PDFThree coordination polymers of copper(II), viz. ([Cu(ida)(4,4'-bipyH)]ClO(4))( proportional, variant ) (1), ([Cu(2)(ida)(2)(micro-4,4'-bipy)].2H(2)O)( proportional, variant ) (2), and [Cu(2)(ida)(2)(bpa)]( proportional, variant ) (3) have been synthesized by the process of self-assembly using Cu(ida) [ida = iminodiacetate(2-)] as the building block and 4,4'-bipyridyl and 1,2-bis(4-pyridyl)ethane (bpa) as linkers.
View Article and Find Full Text PDFThe tridentate dithiocarbazate-based Schiff base ligands H(2)L (S-methyl-3-((5-R-2-hydroxyphenyl)methyl)dithiocarbazate, R = NO(2), L = L(2); R = Br, L = L(3)) react with [VO(acac)(2)] in the presence of imidazole derivatives as coligands to form oxovanadium(IV) and cis-dioxovanadium(V) complexes. With benzimidazole and N-methylimidazole, the products are oxovanadium(IV) complexes, viz. [VOL(3)(BzIm)].
View Article and Find Full Text PDFThe reactions of the water-soluble chelating phosphines 1,2-bis(bis(hydroxyalkyl)phosphino)ethane (alkyl = n-propyl, DHPrPE; n-butyl, DHBuPE; n-pentyl, DHPePE) with FeCl(2).4H(2)O and FeSO(4).7H(2)O were studied as routes to water-soluble complexes that will bind small molecules, dinitrogen in particular.
View Article and Find Full Text PDFA new route to isoindazoles and cinnolines through the cyclization of (2-alkynylphenyl)triazenes under neutral conditions is presented. The products that result from heating the starting triazenes depend on both the type of alkyne ortho to the triazene functionality and the temperature used. Butadiyne moieties ortho to dialkyltriazenes yield bis-isoindazole dimers when heated to 150 degrees C in MeI.
View Article and Find Full Text PDFEvaluation of the malonamide substructure with respect to binding site preorganization and complementarity for lanthanide metal ions suggests a new ligand architecture specifically designed to enhance lanthanide ion affinity. Consideration of conformational reorganization, restricted bond rotation, and donor group orientation suggests that typical malonamide structures, for example, N,N,N'N'-tetrahexylpropane-1,3-diamide (1), N,N'-dibutyl-N,N'-dimethyl-2-tetradecylpropane-1,3-diamide (2), or N,N,N'N'-tetramethylpropane-1,3-diamide (6), are poorly organized for metal ion complexation. Molecular mechanics analyses show that the unfavorable enthalpic and entropic terms are eliminated by the use of the novel bicyclic architecture found in 3,9-diaza-3,9-dimethylbicyclo[4.
View Article and Find Full Text PDFVanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L.
View Article and Find Full Text PDFThe syntheses of the water-soluble, chelating phosphines 1,2-bis(bis(hydroxybutyl)phosphino)ethane (1, n = 3; DHBuPE) and 1,2-bis(bis(hydroxypentyl)phosphino)ethane (1, n = 4; DHPePE) are reported. These ligands (and, in general, other 1,2-bis(bis(hydroxyalkyl)phosphino)ethane ligands) can be used to impart water solubility to metal complexes. As examples of this, the [Ni(DHPrPE)(2)Cl]Cl (2), [Rh(DHPrPE)(2)][Cl] (3), and [Ru(DHBuPE)(2)Cl(2)][Cl] (4) complexes were synthesized; they are indeed soluble in water (>0.
View Article and Find Full Text PDF