In this paper, we present the design and performance of the upgraded University of Florida torsion pendulum facility for testing inertial sensor technology related to space-based gravitational wave observatories and geodesy missions. In particular, much work has been conducted on inertial sensor technology related to the Laser Interferometer Space Antenna (LISA) space gravitational wave observatory mission. A significant upgrade to the facility was the incorporation of a newly designed and fabricated LISA-like gravitational reference sensor (GRS) based on the LISA Pathfinder GRS.
View Article and Find Full Text PDFVarious space missions and applications require the charge on isolated test masses to be strictly controlled because any unwanted disturbances will introduce acceleration through the Coulomb interaction between the test masses and their surrounding conducting surfaces. In many space missions, charge control has been realized using ultraviolet (UV) photoemission to generate photoelectrons from metal surfaces. The efficiency of photoelectron emission strongly depends on multiple physical parameters of gold-coated surfaces, such as the work function, reflectivity, and quantum yield.
View Article and Find Full Text PDFMany applications require charge neutralization of isolated test bodies, and this has been successfully done using photoelectric emission from surfaces which are electrically benign (gold) or superconducting (niobium). Gold surfaces nominally have a high work function (∼5.1 eV) which should require deep UV photons for photoemission.
View Article and Find Full Text PDFThere is now an enormously rich variety of experimental techniques being brought to bear on experimental searches for dark matter, covering a wide range of suggested forms for it. The existence of "dark matter", in some form or other, is inferred from a number of relatively simple observations and the problem has been known for over half a century. To explain "dark matter" is one of the foremost challenges today - the answer will be of fundamental importance to cosmologists, astrophysicists, particle physicists, and general relativists.
View Article and Find Full Text PDF