The copolymerization of a prefunctionalized, tetrasulfonated oligophenylene monomer was investigated. The corresponding physical and electrochemical properties of the polymers were tuned by varying the ratio of hydrophobic to hydrophilic units within the polymers. Membranes prepared from these polymers possessed ion exchange capacities ranging from 1.
View Article and Find Full Text PDFWe report on poly(arylene-imidazoliums), which were synthesized by microwave polycondensation of dialdehyde with bisbenzil and quantitatively functionalized by alkylation. This cationic polyelectrolyte is sterically protected around the C2-position and is stable in 10 M KOH at 100 °C ( of >5000 h). Alkaline stability is rationalized through analyses of model compounds, single crystal X-ray diffraction, and density functional theory.
View Article and Find Full Text PDFTwo classes of novel sulfonated phenylated polyphenylene ionomers are investigated as polyaromatic-based proton exchange membranes. Both types of ionomer possess high ion exchange capacities yet are insoluble in water at elevated temperatures. They exhibit high proton conductivity under both fully hydrated conditions and reduced relative humidity, and are markedly resilient to free radical attack.
View Article and Find Full Text PDFWe report the synthesis and molecular characterization of structurally defined, sulfo-phenylated, oligo- and polyphenylenes that incorporate a novel tetra-sulfonic acid bistetracyclone monomer. The utility of this monomer in the [4 + 2] Diels-Alder cycloaddition to produce well-defined, sulfonated oligophenylenes and pre-functionalized polyphenylene homopolymers is demonstrated. Characterization of the oligophenylenes indicates formation of the meta-meta and para-para adducts in a ∼ 1:1 ratio.
View Article and Find Full Text PDFSelective formation and reactivity of hydrogen (H(•)) and hydroxyl (HO(•)) radicals with perfluorinated sulfonated ionomer membrane, Nafion 211, is described. Selective formation of radicals was achieved by electron beam irradiation of aqueous solutions of H2O2 or H2SO4 to form HO(•) and H(•), respectively, and confirmed by ESR spectroscopy using a spin trap. The structure of Nafion 211 after reaction with H(•) or HO(•) was determined using calibrated (19)F magic angle spinning NMR spectroscopy.
View Article and Find Full Text PDFA stable hydroxide-conducting membrane based on benzimidazolium hydroxide and its analogous anion-exchange polymer is reported for the first time. The molecular and polymeric analogues possess unprecedented hydroxide stability in neutral and KOH solutions as the soluble benzimidazolium salt, made possible by steric crowding around the benzimidazolium C2 position, which is usually susceptible to nucleophilic attack by OH(-). The polymers were cast and insolubilized for the purpose of forming membranes by blending with a poly(benzimidazole) followed by hydroxide-activated electrostatic interactions.
View Article and Find Full Text PDFA fundamental understanding of structure-morphology-property relationships of proton exchange membranes (PEMs) is crucial in order to improve the cost, performance, and durability of PEM fuel cells (PEMFCs). In this context, there has been an explosion over the past five years in the volume of research carried out in the area of non-perfluorinated, proton-conducting polymer membranes, with a particular emphasis on exploiting phase behavior associated with block and graft copolymers. This progress report highlights a selection of interesting studies in the area that have appeared since 2005, which illustrate the effects of factors such as acid and water contents and morphology upon proton conduction.
View Article and Find Full Text PDFAn in-depth analysis for proton exchange membranes to examine the effects of acid concentration and effective proton mobility upon proton conductivity as well as their relationship to water content was carried out on two main-chain, statistically sulfonated polymers at 25 degrees C. These polymer systems consisted of poly(ethylenetetrafluoroethylene-graft-polystyrenesulfonic acid) (1) and sulfonated trifluorostyrene (BAM) membrane (2). Nafion (3) was used for comparison.
View Article and Find Full Text PDF