Publications by authors named "Timothy J McGovern"

Nitrosamine drug substance-related impurities (NDSRIs) are a sub-category of N-nitrosamine drug impurities that share structural similarity to the corresponding active pharmaceutical ingredient. The mutagenicity of NDSRIs is poorly understood. We previously tested a series of NDSRIs using the Enhanced Ames Test (EAT).

View Article and Find Full Text PDF

Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity.

View Article and Find Full Text PDF

N-Nitrosamine impurities, including nitrosamine drug substance-related impurities (NDSRIs), have challenged pharmaceutical industry and regulators alike and affected the global drug supply over the past 5 years. Nitrosamines are a class of known carcinogens, but NDSRIs have posed additional challenges as many lack empirical data to establish acceptable intake (AI) limits. Read-across analysis from surrogates has been used to identify AI limits in some cases; however, this approach is limited by the availability of robustly-tested surrogates matching the structural features of NDSRIs, which usually contain a diverse array of functional groups.

View Article and Find Full Text PDF

N-nitrosamine impurities have been increasingly detected in human drugs. This is a safety concern as many nitrosamines are mutagenic in bacteria and carcinogenic in rodent models. Typically, the mutagenic and carcinogenic activity of nitrosamines requires metabolic activation by cytochromes P450 enzymes (CYPs), which in many in vitro models are supplied exogenously using rodent liver homogenates.

View Article and Find Full Text PDF

Propranolol is a widely used β-blocker that can generate a nitrosated derivative, N-nitroso propranolol (NNP). NNP has been reported to be negative in the bacterial reverse mutation test (the Ames test) but genotoxic in other in vitro assays. In the current study, we systematically examined the in vitro mutagenicity and genotoxicity of NNP using several modifications of the Ames test known to affect the mutagenicity of nitrosamines, as well as a battery of genotoxicity tests using human cells.

View Article and Find Full Text PDF

Many nitrosamines are recognized as mutagens and potent rodent carcinogens. Over the past few years, nitrosamine impurities have been detected in various drugs leading to drug recalls. Although nitrosamines are included in a 'cohort of concern' because of their potential human health risks, most of this concern is based on rodent cancer and bacterial mutagenicity data, and there are little data on their genotoxicity in human-based systems.

View Article and Find Full Text PDF

Excipients are used in all drug products and in most food products. New technologies are being tested to increase the amount or rate of absorption of drugs and new and novel excipients may be included among them. New physical approaches such as nanoparticles of drug and excipients or lysosomes may offer better drug delivery especially of hard to absorb or difficult to formulate oral drugs.

View Article and Find Full Text PDF

This symposium focuses on the management of genotoxic impurities in the synthesis of pharmaceuticals. Recent developments in both Europe and United States require sponsors of new drug applications to develop processes to control the risks of potential genotoxic impurities. Genotoxic impurities represent a special case relative to the International Conference on Harmonisation Q3A/Q3B guidances, because genotoxicity tests used to qualify the drug substance may not be sufficient to demonstrate safety of a potentially genotoxic impurity.

View Article and Find Full Text PDF