Publications by authors named "Timothy J McCarthy"

The US Food and Drug Administration (FDA) has publicly recognized the importance of improving drug development efficiency, deeming translational biomarkers a top priority. The use of imaging biomarkers has been associated with increased rates of drug approvals. An appropriate level of validation provides a pragmatic way to choose and implement these biomarkers.

View Article and Find Full Text PDF

Purpose: A sensitive and specific imaging biomarker to monitor immune activation and quantify pharmacodynamic responses would be useful for development of immunomodulating anti-cancer agents. PF-07062119 is a T cell engaging bispecific antibody that binds to CD3 and guanylyl cyclase C, a protein that is over-expressed by colorectal cancers. Here, we used Zr-Df-IAB22M2C (Zr-Df-Crefmirlimab), a human CD8-specific minibody to monitor CD8+ T cell infiltration into tumors by positron emission tomography.

View Article and Find Full Text PDF

Non-catechol-based high-affinity selective dopamine D receptor (D1R) agonists were recently described, and candidate PET ligands were selected on the basis of favorable properties. The objective of this study was to characterize in vivo in nonhuman primates 2 novel D1R agonist PET radiotracers, racemic F-MNI-800 and its more active atropisomeric (-)-enantiomer, F-MNI-968. Ten brain PET experiments were conducted with F-MNI-800 on 2 adult rhesus macaques and 2 adult cynomolgus macaques, and 8 brain PET experiments were conducted with F-MNI-968 on 2 adult rhesus macaques and 2 adult cynomolgus macaques.

View Article and Find Full Text PDF

Purpose: Beta-secretase 1 (BACE1) enzyme is implicated in the pathophysiology of Alzheimer's disease. [F]PF-06684511 is a positron emission tomography (PET) radioligand for imaging BACE1. Despite favorable brain kinetic properties, the effective dose (ED) of [F]PF-06684511 estimated in non-human primates was relatively high.

View Article and Find Full Text PDF

Monoacylglycerol lipase (MAGL), a serine hydrolase extensively expressed throughout the brain, serves as a key gatekeeper regulating the tone of endocannabinoid signaling. Preclinically, inhibition of MAGL is known to provide therapeutic benefits for a number of neurological disorders. The availability of a MAGL-specific positron emission tomography (PET) ligand would considerably facilitate the development and clinical characterization of MAGL inhibitors via noninvasive and quantitative PET imaging.

View Article and Find Full Text PDF

β-secretase 1 (BACE1) is a key enzyme in the generation of β-amyloid, which is accumulated in the brain of Alzheimer disease patients. PF-06684511 was identified as a candidate PET ligand for imaging BACE1 in the brain and showed high specific binding in an initial assessment in a nonhuman primate (NHP) PET study using F-PF-06684511. In this effort, we aimed to quantitatively evaluate the regional brain distribution of F-PF-06684511 in NHPs under baseline and blocking conditions and to assess the target occupancy of BACE1 inhibitors.

View Article and Find Full Text PDF
Article Synopsis
  • Fragrance ingredients are widely used in baby personal care products, generally considered safe, but can irritate respiratory systems at high concentrations.
  • This study developed a method to measure air concentrations of fragrance compounds during simulated infant bathing and lotion application, using a robot to replicate toddler movement in a bathroom.
  • The results indicated low air concentration levels of common fragrances in infants' and toddlers' breathing zones, and the method could help improve safety assessments for new baby products.
View Article and Find Full Text PDF

Aims/hypothesis: The progressive loss of beta cell function is part of the natural history of type 2 diabetes. Autopsy studies suggest that this is, in part, due to loss of beta cell mass (BCM), but this has not been confirmed in vivo. Non-invasive methods to quantify BCM may contribute to a better understanding of type 2 diabetes pathophysiology and the development of therapeutic strategies.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by accumulation of β-amyloid (Aβ) plaques and neurofibrillary tau tangles in the brain. β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) plays a key role in the generation of Aβ fragments via extracellular cleavage of the amyloid precursor protein (APP). We became interested in developing a BACE1 PET ligand to facilitate clinical assessment of BACE1 inhibitors and explore its potential in the profiling and selection of patients for AD trials.

View Article and Find Full Text PDF

The Massachusetts General Hospital Radiochemistry Program, in collaboration with Pfizer, has developed unique C and F-labeling strategies to synthesize isotopologs of lorlatinib (PF-06463922) which is undergoing phase III clinical trial investigations for treatment of non-small-cell lung cancers with specific molecular alterations. A major goal in cancer therapeutics is to measure the concentrations of this drug in the brain metastases of patients with lung cancer, and penetration of the blood-brain barrier is important for optimal therapeutic outcomes. Our recent publication in Nature Communications employed radiolabeled lorlatinib and positron emission tomography (PET) studies in preclinical models including nonhuman primates (NHPs) that demonstrated high brain permeability of this compound.

View Article and Find Full Text PDF

Pharmaceutical research and development requires a systematic interrogation of a candidate molecule through clinical studies. To ensure resources are spent on only the most promising molecules, early clinical studies must understand fundamental attributes of the drug candidate, including exposure at the target site, target binding and pharmacological response in disease. Molecular imaging has the potential to quantitatively characterize these properties in small, efficient clinical studies.

View Article and Find Full Text PDF

A new in vitro model based on the electrical resistance properties of the skin barrier has been established in this laboratory. The model utilises a tape stripping procedure in dermatomed pig skin that removes a specific proportion of the stratum corneum, mimicking impaired barrier function observed in humans with damaged skin. The skin penetration and distribution of chemicals with differing physicochemical properties, namely; Benzoic acid, 3-Aminophenol, Caffeine and Sucrose has been assessed in this model.

View Article and Find Full Text PDF

Measurements of drug occupancies using positron emission tomography (PET) can be biased if the radioligand concentration exceeds "tracer" levels. Negative bias would also arise in successive PET scans if clearance of the radioligand is slow, resulting in a carryover effect. We developed a method to (1) estimate the in vivo dissociation constant K of a radioligand from PET studies displaying a non-tracer carryover (NTCO) effect and (2) correct the NTCO bias in occupancy studies taking into account the plasma concentration of the radioligand and its in vivo K.

View Article and Find Full Text PDF

Background: Several reproducibility studies have established good test-retest reliability of FDG-PET in various oncology settings. However, these studies are based on relatively short inter-scan periods of 1-3 days while, in contrast, response assessments based on FDG-PET in early phase drug trials are typically made over an interval of 2-3 weeks during the first treatment cycle. With focus on longer, on-treatment scan intervals, we develop a data-driven approach to calculate baseline-specific cutoff values to determine patient-level changes in glucose uptake that are unlikely to be explained by random variability.

View Article and Find Full Text PDF

Purpose: [(18)F]FPEB is a promising PET radioligand for the metabotropic glutamate receptor 5 (mGluR5), a potential target for the treatment of neuropsychiatric diseases. The purpose of this study was to evaluate the test-retest reproducibility of [(18)F]FPEB in the human brain.

Methods: Seven healthy male subjects were scanned twice, 3 - 11 weeks apart.

View Article and Find Full Text PDF

The conventional safety approach that includes dermal absorption of pharmaceutical or consumer products uses models that are based on intact skin. However, when products are intended for application to skin with a less effective barrier, such as in new-born infants, or in cases where the skin is mildly damaged or diseased, there are instances where absorption through compromised skin is also important. A tape stripping procedure was investigated using dermatomed pig skin to assess if an in vitro model could replicate the typical changes in barrier function observed in humans with compromised skin.

View Article and Find Full Text PDF

Introduction: Kappa opioid receptors (KOR) are implicated in several brain disorders. In this report, a first-in-human positron emission tomography (PET) study was conducted with the potent and selective KOR agonist tracer, [(11)C]GR103545, to determine an appropriate kinetic model for analysis of PET imaging data and assess the test-retest reproducibility of model-derived binding parameters. The non-displaceable distribution volume (V(ND)) was estimated from a blocking study with naltrexone.

View Article and Find Full Text PDF

To accelerate the discovery of novel small molecule central nervous system (CNS) positron emission tomography (PET) ligands, we aimed to define a property space that would facilitate ligand design and prioritization, thereby providing a higher probability of success for novel PET ligand development. Toward this end, we built a database consisting of 62 PET ligands that have successfully reached the clinic and 15 radioligands that failed in late-stage development as negative controls. A systematic analysis of these ligands identified a set of preferred parameters for physicochemical properties, brain permeability, and nonspecific binding (NSB).

View Article and Find Full Text PDF

[(18)F]FPEB is a positron emission tomography tracer which, in preclinical studies, has shown high specificity and selectivity toward the metabotropic glutamate receptor 5 (mGluR5). It possesses the potential to be used in human studies to evaluate mGluR5 function in a range of neuropsychiatric disorders, such as anxiety and Fragile X syndrome. To define optimal scan methodology, healthy human subjects were scanned for 6 hours following either a bolus injection (n=5) or bolus-plus-constant-infusion (n=5) of [(18)F]FPEB.

View Article and Find Full Text PDF

Three fluoro-barbiturates were synthesised, showing in vivo sedative efficacy. One of them, [(18)F], was synthesised in radiofluorinated form. PET/CT Imaging with [(18)F] identified β-amyloid over-expressing transgenic mice (βA mice) compared to wild type and tau lines.

View Article and Find Full Text PDF

Background: We evaluated pharmacodynamic changes in tumour perfusion using positron emission tomography (PET) imaging with 15O-water to assess biological response to sunitinib, a multitargeted tyrosine kinase inhibitor.

Methods: Patients with advanced malignancies received sunitinib 50 mg/day orally, once daily for 4 weeks on treatment, followed by 2 weeks off treatment, in repeated 6-week cycles. Quantitative measurement of tumour perfusion was assessed using 15O-water-PET at baseline and after 2 weeks of treatment.

View Article and Find Full Text PDF