We present a fully automated cryogenic sample insertion and ejection system for use with low-temperature EPR probes. We show how the system can be implemented on a conventional EPR spectrometer and that ejection and insertion is reliably possible at temperatures down to 10 K. Furthermore, we investigate the glass properties of a 0.
View Article and Find Full Text PDFThe majority of low-field Overhauser dynamic nuclear polarization (ODNP) experiments reported so far have been 1D NMR experiments to study molecular dynamics and in particular hydration dynamics. In this work, we demonstrate the application of ODNP-enhanced 2D J-resolved (JRES) spectroscopy to improve spectral resolution beyond the limit imposed by the line broadening introduced by the paramagnetic polarizing agent. Using this approach, we are able to separate the overlapping multiplets of ethyl crotonate into a second dimension and clearly identify each chemical site individually.
View Article and Find Full Text PDFThe usual understanding in polymer electrolyte design is that an increase in the polymer dielectric constant results in reduced ion aggregation and therefore increased ionic conductivity. We demonstrate here that in a class of polymers with extensive metal-ligand coordination and tunable dielectric properties, the extent of ionic aggregation is delinked from the ionic conductivity. The polymer systems considered here comprise ether, butadiene, and siloxane backbones with grafted imidazole side-chains, with dissolved Li, Cu, or Zn salts.
View Article and Find Full Text PDFDynamic nuclear polarization (DNP) has gained large interest due to its ability to increase signal intensities in nuclear magnetic resonance (NMR) experiments by several orders of magnitude. Currently, DNP is typically used to enhance high-field, solid-state NMR experiments. However, the method is also capable of dramatically increasing the observed signal intensities in solution-state NMR spectroscopy.
View Article and Find Full Text PDFThe aggregation of the human tau protein into neurofibrillary tangles is directly diagnostic of many neurodegenerative conditions termed tauopathies. The species, factors and events that are responsible for the initiation and propagation of tau aggregation are not clearly established, even in a simplified and artificial system. This motivates the mechanistic study of aggregation of recombinant tau from soluble to fibrillar forms, for which polyanionic cofactors are the most commonly used external inducer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2018
Amyloid fibrils are cross-β-rich aggregates that are exceptionally stable forms of protein assembly. Accumulation of tau amyloid fibrils is involved in many neurodegenerative diseases, including Alzheimer's disease (AD). Heparin-induced aggregates have been widely used and assumed to be a good tau amyloid fibril model for most biophysical studies.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2018
An in-depth knowledge of the interaction of water with amorphous silica is critical to fundamental studies of interfacial hydration water, as well as to industrial processes such as catalysis, nanofabrication, and chromatography. Silica has a tunable surface comprising hydrophilic silanol groups and moderately hydrophobic siloxane groups that can be interchanged through thermal and chemical treatments. Despite extensive studies of silica surfaces, the influence of surface hydrophilicity and chemical topology on the molecular properties of interfacial water is not well understood.
View Article and Find Full Text PDFAmyloid fiber-forming proteins are predominantly intrinsically disordered proteins (IDPs). The protein tau, present mostly in neurons, is no exception. There is a significant interest in the study of tau protein aggregation mechanisms, given the direct correlation between the deposit of β-sheet structured neurofibrillary tangles made of tau and pathology in several neurodegenerative diseases, including Alzheimer's disease.
View Article and Find Full Text PDFWater within and surrounding the structure of a biological system adopts context-specific dynamics that mediate virtually all of the events involved in the inner workings of a cell. These events range from protein folding and molecular recognition to the formation of hierarchical structures. Water dynamics are mediated by the chemistry and geometry of interfaces where water and biomolecules meet.
View Article and Find Full Text PDFThe necessary resonator employed in pulse electron paramagnetic resonance (EPR) rings after the excitation pulse and creates a finite detector dead-time that ultimately prevents the detection of signal from fast relaxing spin systems, hindering the application of pulse EPR to room temperature measurements of interesting chemical or biological systems. We employ a recently available high bandwidth arbitrary waveform generator (AWG) to produce a cancellation pulse that precisely destructively interferes with the resonant cavity ring-down. We find that we can faithfully detect EPR signal at all times immediately after, as well as during, the excitation pulse.
View Article and Find Full Text PDFWe present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range.
View Article and Find Full Text PDF