Modern biomedical computer simulations produce spatiotemporal results that are often viewed at a single point in time on standard 2D displays. An immersive visualization environment (IVE) with 3D stereoscopic capability can mitigate some shortcomings of 2D displays via improved depth cues and active movement to further appreciate the spatial localization of imaging data with temporal computational fluid dynamics (CFD) results. We present a semi-automatic workflow for the import, processing, rendering, and stereoscopic visualization of high resolution, patient-specific imaging data, and CFD results in an IVE.
View Article and Find Full Text PDFCoronary stent design influences local patterns of wall shear stress (WSS) that are associated with neointimal growth, restenosis, and the endothelialization of stent struts. The number of circumferentially repeating crowns N(C) for a given stent design is often modified depending on the target vessel caliber, but the hemodynamic implications of altering N(C) have not previously been studied. In this investigation, we analyzed the relationship between vessel diameter and the hemodynamically optimal N(C) using a derivative-free optimization algorithm coupled with computational fluid dynamics.
View Article and Find Full Text PDFCoronary stent design affects the spatial distribution of wall shear stress (WSS), which can influence the progression of endothelialization, neointimal hyperplasia, and restenosis. Previous computational fluid dynamics (CFD) studies have only examined a small number of possible geometries to identify stent designs that reduce alterations in near-wall hemodynamics. Based on a previously described framework for optimizing cardiovascular geometries, we developed a methodology that couples CFD and three-dimensional shape-optimization for use in stent design.
View Article and Find Full Text PDFComputational modeling is often used to quantify hemodynamic alterations induced by stenting, but frequently uses simplified device or vascular representations. Based on a series of Boolean operations, we developed an efficient and robust method for assessing the influence of current and next-generation stents on local hemodynamics and vascular biomechanics quantified by computational fluid dynamics. Stent designs were parameterized to allow easy control over design features including the number, width and circumferential or longitudinal spacing of struts, as well as the implantation diameter and overall length.
View Article and Find Full Text PDFAbnormal blood flow patterns promoting inflammation, cellular proliferation, and thrombosis may be established by local changes in vessel geometry after stent implantation in bifurcation lesions. Our objective was to quantify altered hemodynamics due to main vessel (MV) stenting and subsequent virtual side branch (SB) angioplasty in a coronary bifurcation by using computational fluid dynamics (CFD) analysis. CFD models were generated from representative vascular dimensions and intravascular ultrasound images.
View Article and Find Full Text PDF