Publications by authors named "Timothy J Edwards"

Article Synopsis
  • Corpus callosum dysgenesis is a condition where the corpus callosum doesn’t develop properly, linked to various neuropsychological issues, including congenital mirror movement disorder, where one side of the body mimics movements of the other.
  • A study focused on a family with DCC gene mutations revealed that all members exhibited mirror movements, but the son, who also had partial agenesis of the corpus callosum, faced more severe cognitive impairments compared to the mother and daughter.
  • Neuropsychological testing showed that while the mother and daughter had some memory and speech difficulties, the son struggled significantly in areas like psychomotor speed and executive functioning, although he still showed good memory and theory of mind abilities.
View Article and Find Full Text PDF

Corpus callosum dysgenesis (CCD) is a congenital disorder that incorporates either partial or complete absence of the largest cerebral commissure. Remodelling of the interhemispheric fissure (IHF) provides a substrate for callosal axons to cross between hemispheres, and its failure is the main cause of complete CCD. However, it is unclear whether defects in this process could give rise to the heterogeneity of expressivity and phenotypes seen in human cases of CCD.

View Article and Find Full Text PDF

The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). Deleted in colorectal carcinoma (DCC) and netrin 1 (NTN1) are molecules that have an evolutionarily conserved function in commissural axon guidance.

View Article and Find Full Text PDF

Post-zygotic mutations that generate tissue mosaicism are increasingly associated with severe congenital defects, including those arising from failed neural tube closure. Here we report that neural fold elevation during mouse spinal neurulation is vulnerable to deletion of the VANGL planar cell polarity protein 2 (Vangl2) gene in as few as 16% of neuroepithelial cells. Vangl2-deleted cells are typically dispersed throughout the neuroepithelium, and each non-autonomously prevents apical constriction by an average of five Vangl2-replete neighbours.

View Article and Find Full Text PDF

Corpus callosum dysgenesis (CCD) describes a collection of brain malformations in which the main fiber tract connecting the two hemispheres is either absent (complete CCD, or 'agenesis of the corpus callosum') or reduced in size (partial CCD). Humans with these neurodevelopmental disorders have a wide range of cognitive outcomes, including seemingly preserved features of interhemispheric communication in some cases. However, the structural substrates that could underlie this variability in outcome remain to be fully elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • * A study of 18 individuals with mild intellectual disabilities and behavioral issues revealed that they are haploinsufficient for NFIB, with various genetic alterations including microdeletions and point mutations affecting the NFIB gene.
  • * The analysis of a mouse model lacking NFIB in the cortex showed enlarged cerebral cortex while maintaining overall brain structure, suggesting that NFIB haploinsufficiency leads to intellectual disabilities accompanied by macrocephaly.
View Article and Find Full Text PDF

The deleted in colorectal cancer (DCC) gene encodes the netrin-1 (NTN1) receptor DCC, a transmembrane protein required for the guidance of commissural axons. Germline DCC mutations disrupt the development of predominantly commissural tracts in the central nervous system (CNS) and cause a spectrum of neurological disorders. Monoallelic, missense, and predicted loss-of-function DCC mutations cause congenital mirror movements, isolated agenesis of the corpus callosum (ACC), or both.

View Article and Find Full Text PDF

The corpus callosum forms the major interhemispheric connection in the human brain and is unique to eutherian (or placental) mammals. The developmental events associated with the evolutionary emergence of this structure, however, remain poorly understood. A key step in callosal formation is the prior remodeling of the interhemispheric fissure by embryonic astroglial cells, which then subsequently act as a permissive substrate for callosal axons, enabling them to cross the interhemispheric midline.

View Article and Find Full Text PDF

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis.

View Article and Find Full Text PDF

Social experience is essential for adolescent development and plasticity of social animals. Deprivation of the experience by social isolation impairs white matter microstructures in the prefrontal cortex. However, the effect of social isolation may involve highly distributed brain networks, and therefore cannot be fully explained by a change of a single region.

View Article and Find Full Text PDF

Transcription factors act during cortical development as master regulatory genes that specify cortical arealization and cellular identities. Although numerous transcription factors have been identified as being crucial for cortical development, little is known about their downstream targets and how they mediate the emergence of specific neuronal connections via selective axon guidance. The EMX transcription factors are essential for early patterning of the cerebral cortex, but whether EMX1 mediates interhemispheric connectivity by controlling corpus callosum formation remains unclear.

View Article and Find Full Text PDF

The corpus callosum is the largest fibre tract in the brain, connecting the two cerebral hemispheres, and thereby facilitating the integration of motor and sensory information from the two sides of the body as well as influencing higher cognition associated with executive function, social interaction and language. Agenesis of the corpus callosum is a common brain malformation that can occur either in isolation or in association with congenital syndromes. Understanding the causes of this condition will help improve our knowledge of the critical brain developmental mechanisms required for wiring the brain and provide potential avenues for therapies for callosal agenesis or related neurodevelopmental disorders.

View Article and Find Full Text PDF

Purpose: To evaluate the correlations and relative contributions of components of a radiation oncology-specific patient satisfaction survey to their overall satisfaction scores.

Methods And Materials: From September 2006 through August 2012, we prospectively collected data from 8069 patients receiving radiation treatments with a 26-question survey. Each question was rated on a 10-point Likert scale.

View Article and Find Full Text PDF