Publications by authors named "Timothy J Dahlem"

The ability to perform reverse genetics in the zebrafish model organism has been greatly advanced with the advent of the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated) system. The high level of efficiency in generating mutations when using the CRISPR/Cas9 system combined with the rapid generation time of the zebrafish model organism has made the possibility of performing F screens in this organism a reality. This unit describes a detailed protocol for performing an F screen using the CRISPR/Cas9 system in zebrafish starting with the design and production of custom CRISPR/Cas9 reagents for injection.

View Article and Find Full Text PDF

Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line.

View Article and Find Full Text PDF

Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates.

View Article and Find Full Text PDF

Zebrafish is a powerful vertebrate model system for studying development, modeling disease, and performing drug screening. Recently a variety of genetic tools have been introduced, including multiple strategies for inducing mutations and generating transgenic lines. However, large-scale screening is limited by traditional genotyping methods, which are time-consuming and labor-intensive.

View Article and Find Full Text PDF

Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-to-one-base-pair recognition code, and they have been very productively incorporated into nucleases (TALENs) for genome engineering.

View Article and Find Full Text PDF

The Snail family of transcriptional regulators consists of three highly conserved members. These proteins regulate (repress) transcription via the recruitment of histone deacetylases to target gene promoters that possess the appropriate E-box binding sequences. Murine Snai1 is required for mouse development while Snai2 deficient animals survive with some anomalies.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have quickly emerged as important regulators of mammalian physiology owing to their precise control over the expression of critical protein coding genes. Despite significant progress in our understanding of how miRNAs function in mice, there remains a fundamental need to be able to target and edit miRNA genes in the human genome. Here, we report a novel approach to disrupting human miRNA genes ex vivo using engineered TAL-effector (TALE) proteins to function as nucleases (TALENs) that specifically target and disrupt human miRNA genes.

View Article and Find Full Text PDF

The heteroduplex mobility assay (HMA) is widely used to characterize strain variants of human viruses. To determine whether it can detect small sequence differences in homologous templates, we constructed a series of deletion constructs (1-10 bp deletions) in the multiple cloning site (MCS) of pBluescript II. After PCR amplification of the MCS using a mixture of wild-type and one of the deletion constructs, the resulting PCR amplicons were electrophoresed using 15% polyacrylamide gels.

View Article and Find Full Text PDF

The zebrafish is a powerful experimental system for uncovering gene function in vertebrate organisms. Nevertheless, studies in the zebrafish have been limited by the approaches available for eliminating gene function. Here we present simple and efficient methods for inducing, detecting, and recovering mutations at virtually any locus in the zebrafish.

View Article and Find Full Text PDF

The mouse Pactolus and CD18 genes are highly conserved paralogues. The expression patterns of these genes are diverse in that most cells of hematopoietic lineage express CD18, but Pactolus is only expressed by maturing neutrophils. The minimal promoters of these two genes are homologous, including the conservation of two tandem PU.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: