Publications by authors named "Timothy J Colston"

We present the complete genome sequences of and . Illumina sequencing was performed on genetic material from specimens collected in Namibia in March 2023. The reads were assembled using a method followed by a finishing step.

View Article and Find Full Text PDF

Tetrapods (amphibians, reptiles, birds, and mammals) are model systems for global biodiversity science, but continuing data gaps, limited data standardisation, and ongoing flux in taxonomic nomenclature constrain integrative research on this group and potentially cause biased inference. We combined and harmonised taxonomic, spatial, phylogenetic, and attribute data with phylogeny-based multiple imputation to provide a comprehensive data resource (TetrapodTraits 1.0.

View Article and Find Full Text PDF

We present partial genome sequences of 50 salamander species (Urodela) from 10 genera and 4 families. These span nearly the entire range of genome sizes in salamanders, from ~14-130GB, the latter of which is among the largest of all animal genomes. Only three salamander genomes were available to this point, from Ambystomatidae (one species) and Salamandridae (two species from two genera), to which we have added Amphiumidae (one species), Plethodontidae (45 species from 6 genera), Proteidae (one species), and Sirenidae (three species from two genera).

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how developmental changes in venom expression and diet in eastern diamondback rattlesnakes are linked to age and size, highlighting the unknown molecular mechanisms behind these adaptive traits.
  • - Researchers combined genome assembly with expression and epigenomic analysis to discover regulatory elements and transcription factors involved in venom changes, revealing that epigenomic modifications correlate with alterations in gene expression as snakes mature.
  • - The findings show that adult snakes have increased expression of transcription factors related to growth and biological timing, indicating a complex gene regulation process that changes venom composition with age, providing insights into broader patterns of life-history evolution across different species.
View Article and Find Full Text PDF

Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species.

View Article and Find Full Text PDF

Environmental factors like climate change and captive breeding can impact the gut microbiota and host health. Therefore, conservation efforts for threatened species may benefit from understanding how these factors influence animal microbiomes. Parabasalid protists are members of the mammalian microbiota that can modulate the immune system and impact susceptibility to infections.

View Article and Find Full Text PDF

Parabasalid protists recently emerged as keystone members of the mammalian microbiota with important effects on their host's health. However, the prevalence and diversity of parabasalids in wild reptiles and the consequences of captivity and other environmental factors on these symbiotic protists are unknown. Reptiles are ectothermic, and their microbiomes are subject to temperature fluctuations, such as those driven by climate change.

View Article and Find Full Text PDF

Given the rapidly changing landscapes of habitats across the globe, a sound understanding of host-associated microbial communities and the ecoevolutionary forces that shape them is needed to assess general organismal adaptability. Knowledge of the symbiotic endogenous microbiomes of most reptilian species worldwide remains limited. We sampled gut microbiomes of geckos spanning nine species and four genera in the Philippines to (i) provide baseline data on gut microbiota in these host species, (ii) test for significant associations between host phylogenetic relationships and observed microbial assemblages, potentially indicative of phylosymbiosis, and (iii) identify correlations between multiple ecoevolutionary factors (e.

View Article and Find Full Text PDF

Introduction: In Sub-Saharan Africa, snakebites are a public health problem. In Ethiopia, clinical cases have been described, but little information exists on snakebites burden and its geographical distribution. The aim of this study was to document the spatial distribution of venomous snakes and snakebites in Ethiopia.

View Article and Find Full Text PDF

The 71 currently known species of dwarf geckos of the genus Lygodactylus are a clade of biogeographic interest due to their occurrence in continental Africa, Madagascar, and South America. Furthermore, because many species are morphologically cryptic, our knowledge of species-level diversity within this genus is incomplete, as indicated by numerous unnamed genetic lineages revealed in previous molecular studies. Here we provide an extensive multigene phylogeny covering 56 of the named Lygodactylus species, four named subspecies, and 34 candidate species of which 19 are newly identified in this study.

View Article and Find Full Text PDF

Animals often exhibit distinct microbial communities when maintained in captivity as compared to when in the wild. Such differentiation may be significant in headstart and reintroduction programs where individuals spend some time in captivity before release into native habitats. Using 16S rRNA gene sequencing, we (i) assessed differences in gut microbial communities between captive and wild Fijian crested iguanas () and (ii) resampled gut microbiota in captive iguanas released onto a native island to monitor microbiome restructuring in the wild.

View Article and Find Full Text PDF

The role of natural selection in the evolution of trait complexity can be characterized by testing hypothesized links between complex forms and their functions across species. Predatory venoms are composed of multiple proteins that collectively function to incapacitate prey. Venom complexity fluctuates over evolutionary timescales, with apparent increases and decreases in complexity, and yet the causes of this variation are unclear.

View Article and Find Full Text PDF

The gastrointestinal tract (GIT) of vertebrates contains a series of organs beginning with the mouth and ending with the anus or cloacal opening. Each organ represents a unique environment for resident microorganisms. Due to their simple digestive anatomy, snakes are good models for studying microbiome variation along the GIT.

View Article and Find Full Text PDF

Variation in gene regulation is ubiquitous, yet identifying the mechanisms producing such variation, especially for complex traits, is challenging. Snake venoms provide a model system for studying the phenotypic impacts of regulatory variation in complex traits because of their genetic tractability. Here, we sequence the genome of the Tiger Rattlesnake, which possesses the simplest and most toxic venom of any rattlesnake species, to determine whether the simple venom phenotype is the result of a simple genotype through gene loss or a complex genotype mediated through regulatory mechanisms.

View Article and Find Full Text PDF

Ontogenetic shifts in venom occur in many snakes but establishing their nature as gradual or discrete processes required additional study. We profiled shifts in venom expression from the neonate to adult sizes of two rattlesnake species, the eastern diamondback and the timber rattlesnake. We used serial sampling and venom chromatographic profiling to test if ontogenetic change occurs gradually or discretely.

View Article and Find Full Text PDF

Frogs of the genus Ptychadena (Boulenger, 1917) have long been identified as harboring cryptic diversity and comprising numerous species-complexes (Largen 1997; Zimkus et al. 2017), and many authors have recognized the particularly high hidden richness in the Ethiopian highlands (Largen 1997; see Largen Spawls 2010 and refs. within).

View Article and Find Full Text PDF

A recent molecular phylogenetic revision of the snake-eyed skinks (genus Panaspis Cope, 1868) uncovered extensive cryptic diversity, including several new species from throughout sub-Saharan Africa. Here, we describe one of these from Ethiopia as Panaspis annettesabinae sp. nov.

View Article and Find Full Text PDF

Genome-scale data have the potential to clarify phylogenetic relationships across the tree of life but have also revealed extensive gene tree conflict. This seeming paradox, whereby larger data sets both increase statistical confidence and uncover significant discordance, suggests that understanding sources of conflict is important for accurate reconstruction of evolutionary history. We explore this paradox in squamate reptiles, the vertebrate clade comprising lizards, snakes, and amphisbaenians.

View Article and Find Full Text PDF

Background: The origin of turtles and crocodiles and their easily recognized body forms dates to the Triassic and Jurassic. Despite their long-term success, extant species diversity is low, and endangerment is extremely high compared to other terrestrial vertebrate groups, with ~ 65% of ~ 25 crocodilian and ~ 360 turtle species now threatened by exploitation and habitat loss. Here, we combine available molecular and morphological evidence with statistical and machine learning algorithms to present a phylogenetically informed, comprehensive assessment of diversification, threat status, and evolutionary distinctiveness of all extant species.

View Article and Find Full Text PDF

Venom is a known source of novel antimicrobial natural products. The substantial, increasing number of these discoveries have unintentionally culminated in the misconception that venom and venom-producing glands are largely sterile environments. Culture-dependent and -independent studies on the microbial communities in venom microenvironments reveal the presence of archaea, algae, bacteria, fungi, protozoa, and viruses.

View Article and Find Full Text PDF
Article Synopsis
  • Sexual dimorphism, particularly in color (sexual dichromatism), may accelerate speciation and diversification in animals, but studies yield mixed results on its impact.
  • African reed frogs exhibit unique female-biased sexual dichromatism, where females often have more vibrant colors than males, diverging from typical patterns seen in vertebrates.
  • Research shows that sexual dichromatism in these frogs evolved once and is linked to higher diversification rates compared to monochromatic species, although the specific function of this color change in reed frogs remains uncertain.
View Article and Find Full Text PDF

Trachylepis (Mabuyinae) includes ∼80 species of fully-limbed skinks found primarily in Africa and Madagascar, but a robust species-level phylogeny for this genus is lacking and this impedes studies on a wide-range of topics from biogeography to character evolution. Trachylepis and its close relatives (which together form the Mabuya group or Mabuyinae) are notable in that they have undergone multiple transitions and remarkable specializations in their reproductive modes. A Trachylepis phylogeny will be particularly useful for investigating reproductive evolution, because it includes species that exhibit oviparity, viviparity, and bimodal parity (species with both oviparous and viviparous populations).

View Article and Find Full Text PDF

Accurate representation of lineage diversity through complete taxon sampling is crucial to understanding the evolution of biodiversity, particularly when using molecular phylogenetics to estimate evolutionary relationships. In this interest, taxonomic diversity is often used as a proxy for lineage diversity even though the two concepts are not synonymous. We explore this within the snake tribe Lampropeltini which includes some of the most conspicuous and heavily studied snakes in North America.

View Article and Find Full Text PDF

A molecular phylogeny of the Neotropical snail-eating snakes (tribe Dipsadini) is presented including 43 (24 for the first time) of the 77 species, sampled for both nuclear and mitochondrial genes. Morphological and phylogenetic support was found for four new species of and one of , which are described here based on their unique combination of molecular, meristic, and color pattern characteristics. is designated as a junior subjective synonym of .

View Article and Find Full Text PDF