Publications by authors named "Timothy J A Chico"

Physical activity and cardiovascular disease (CVD) are intimately linked. Low levels of physical activity increase the risk of CVDs, including myocardial infarction and stroke. Conversely, when CVD develops, it often reduces the ability to be physically active.

View Article and Find Full Text PDF

A digital twin is a computer-based "virtual" representation of a complex system, updated using data from the "real" twin. Digital twins are established in product manufacturing, aviation, and infrastructure and are attracting significant attention in medicine. In medicine, digital twins hold great promise to improve prevention of cardiovascular diseases and enable personalised health care through a range of Internet of Things (IoT) devices which collect patient data in real-time.

View Article and Find Full Text PDF

Cardiovascular diseases kill 18 million people each year. Currently, a patient's health is assessed only during clinical visits, which are often infrequent and provide little information on the person's health during daily life. Advances in mobile health technologies have allowed for the continuous monitoring of indicators of health and mobility during daily life by wearable and other devices.

View Article and Find Full Text PDF

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and monitor cardiovascular disease.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia (HHT) causes arteriovenous malformations (AVMs) in multiple organs to cause bleeding, neurological and other complications. HHT is caused by mutations in the BMP co-receptor endoglin. We characterised a range of vascular phenotypes in embryonic and adult endoglin mutant zebrafish and the effect of inhibiting different pathways downstream of Vegf signalling.

View Article and Find Full Text PDF

Background: Hemodynamic wall shear stress (WSS) exerted on the endothelium by flowing blood determines the spatial distribution of atherosclerotic lesions. Disturbed flow (DF) with a low WSS magnitude and reversing direction promotes atherosclerosis by regulating endothelial cell (EC) viability and function, whereas un-DF which is unidirectional and of high WSS magnitude is atheroprotective. Here, we study the role of EVA1A (eva-1 homolog A), a lysosome and endoplasmic reticulum-associated protein linked to autophagy and apoptosis, in WSS-regulated EC dysfunction.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) is the world's leading cause of mortality. There is significant interest in using Artificial Intelligence (AI) to analyse data from novel sensors such as wearables to provide an earlier and more accurate prediction and diagnosis of heart disease. Digital health technologies that fuse AI and sensing devices may help disease prevention and reduce the substantial morbidity and mortality caused by CVD worldwide.

View Article and Find Full Text PDF

With advancements in imaging techniques, data visualization allows new insights into fundamental biological processes of development and disease. However, although biomedical science is heavily reliant on imaging data, interpretation of datasets is still often based on subjective visual assessment rather than rigorous quantitation. This overview presents steps to validate image processing and segmentation using the zebrafish brain vasculature data acquired with light sheet fluorescence microscopy as a use case.

View Article and Find Full Text PDF

The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature.

View Article and Find Full Text PDF

Hereditary haemorrhagic telangiectasia (HHT) is characterised by arteriovenous malformations (AVMs). These vascular abnormalities form when arteries and veins directly connect, bypassing the local capillary system. Large AVMs may occur in the lungs, liver and brain, increasing the risk of morbidity and mortality.

View Article and Find Full Text PDF

Objective: Massage is ubiquitous in elite sport and increasingly common at amateur level but the evidence base for this intervention has not been reviewed systematically. We therefore performed a systematic review and meta-analysis examining the effect of massage on measures of sporting performance and recovery.

Design And Eligibility: We searched PubMed, MEDLINE and Cochrane to identify randomised studies that tested the effect of manual massage on measures of sporting performance and/or recovery.

View Article and Find Full Text PDF

Diabetes is associated with dysfunction of the neurovascular unit, although the mechanisms of this are incompletely understood and currently no treatment exists to prevent these negative effects. We previously found that the nitric oxide (NO) donor sodium nitroprusside (SNP) prevents the detrimental effect of glucose on neurovascular coupling in zebrafish. We therefore sought to establish the wider effects of glucose exposure on both the neurovascular unit and on behaviour in zebrafish, and the ability of SNP to prevent these.

View Article and Find Full Text PDF

Background: Cilia are essential for morphogenesis and maintenance of many tissues. Loss-of-function of cilia in early Zebrafish development causes a range of vascular defects, including cerebral hemorrhage and reduced arterial vascular mural cell coverage. In contrast, loss of endothelial cilia in mice has little effect on vascular development.

View Article and Find Full Text PDF

Purpose: To refine methods that assess structural brain abnormalities and calculate intracranial volumes in fetuses with congenital heart diseases (CHD) using in utero MR (iuMR) imaging. Our secondary objective was to assess the prevalence of brain abnormalities in this high-risk cohort and compare the brain volumes with normative values.

Methods: We performed iuMR on 16 pregnant women carrying a fetus with CHD and gestational age ≥ 28-week gestation and no brain abnormality on ultrasonography.

View Article and Find Full Text PDF

Angiogenesis requires co-ordination of multiple signalling inputs to regulate the behaviour of endothelial cells (ECs) as they form vascular networks. Vascular endothelial growth factor (VEGF) is essential for angiogenesis and induces downstream signalling pathways including increased cytosolic calcium levels. Here we show that transmembrane protein 33 (tmem33), which has no known function in multicellular organisms, is essential to mediate effects of VEGF in both zebrafish and human ECs.

View Article and Find Full Text PDF

Gastrointestinal resections are a common operation and most involve an anastomosis to rejoin the ends of the remaining bowel to restore gastrointestinal (GIT) continuity. While most joins heal uneventfully, in up to 26% of patients healing fails and an anastomotic leak (AL) develops. Despite advances in surgical technology and techniques, the rate of anastomotic leaks has not decreased over the last few decades raising the possibility that perhaps we do not yet fully understand the phenomenon of AL and are thus ill-equipped to prevent it.

View Article and Find Full Text PDF

Objective: Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function.

View Article and Find Full Text PDF

Rationale: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown.

Objective: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease.

View Article and Find Full Text PDF

Introduction And Objectives: The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2) transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish.

View Article and Find Full Text PDF

Genome-wide association studies (GWAS) have identified genetic variants in a number of chromosomal regions that are associated with atrial fibrillation (AF). The mechanisms underlying these associations are unknown, but are likely to involve effects of the risk haplotypes on expression of neighbouring genes. To investigate the association between genetic variants at AF-associated loci and expression of nearby candidate genes in human atrial tissue and peripheral blood.

View Article and Find Full Text PDF

The zinc-finger transcription factor KLF2 transduces the physical forces exerted by blood flow into molecular signals responsible for a wide range of biological responses. Following its initial recognition as a flow-responsive endothelial transcription factor, KLF2 is now known to be expressed in a range of cell types and to participate in a number of processes during development and disease such as endothelial homeostasis, vasoregulation, vascular growth/remodeling, and inflammation. In this review, we summarize the current understanding about KLF2 with a focus on its effects on vascular biology.

View Article and Find Full Text PDF

MicroRNA (miRNA) are short noncoding RNA that regulate gene expression by inhibiting translation or promoting degradation of target mRNA. miRNA are key regulators of a wide range of cellular processes and their discovery has revolutionized our understanding of gene regulatory networks. Pulmonary arterial hypertension (PAH) is a debilitating and fatal disease characterized by remodeling of pulmonary arteries and right heart failure.

View Article and Find Full Text PDF

Background: Observational data associate lower levels of serum vitamin D with coronary artery calcification, cardiovascular events and mortality. However, there is little interventional evidence demonstrating that moderate vitamin D deficiency plays a causative role in cardiovascular disease. This study examined the cardiovascular effects of dietary vitamin D deficiency and of vitamin D receptor agonist (paricalcitol) administration in apolipoprotein E knockout mice.

View Article and Find Full Text PDF