Neuroinflammation in the central nervous system (CNS), driven largely by resident phagocytes, has been proposed as a significant contributor to disability accumulation in multiple sclerosis (MS) but has not been addressed therapeutically. Bruton's tyrosine kinase (BTK) is expressed in both B-lymphocytes and innate immune cells, including microglia, where its role is poorly understood. BTK inhibition may provide therapeutic benefit within the CNS by targeting adaptive and innate immunity-mediated disease progression in MS.
View Article and Find Full Text PDFChronic inflammatory demyelinating polyneuropathy (CIDP) is a rare, immune-mediated disorder in which an aberrant immune response causes demyelination and axonal damage of the peripheral nerves. Genetic contribution to CIDP is unclear and no genome-wide association study (GWAS) has been reported so far. In this study, we aimed to identify CIDP-related risk loci, genes, and pathways.
View Article and Find Full Text PDFPLCγ2 is genetically linked to Alzheimer's disease (AD), but it is unclear how PLCγ2 contributes to pathology. Tsai et al. demonstrate that AD-associated PLCG2 variants bidirectionally orchestrate microglial responses to plaques and impact neural function in an AD mouse model.
View Article and Find Full Text PDFTrends Pharmacol Sci
October 2023
Iron accumulation has been associated with the etiology and progression of multiple neurodegenerative diseases (NDDs). The exact role of iron in these diseases is not fully understood, but an iron-dependent form of regulated cell death called ferroptosis could be key. Although there is substantial preclinical and clinical evidence that ferroptosis plays a role in NDD, there are still questions regarding how to target ferroptosis therapeutically, including which proteins to target, identification of clinically relevant biomarkers, and which patients might benefit most.
View Article and Find Full Text PDFChronic autoimmune demyelinating neuropathies are a group of rare neuromuscular disorders with complex, poorly characterized etiology. Here we describe a phenotypic, human-on-a-chip (HoaC) electrical conduction model of two rare autoimmune demyelinating neuropathies, chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN), and explore the efficacy of TNT005, a monoclonal antibody inhibitor of the classical complement pathway. Patient sera was shown to contain anti-GM1 IgM and IgG antibodies capable of binding to human primary Schwann cells and induced pluripotent stem cell derived motoneurons.
View Article and Find Full Text PDFChronic inflammatory demyelinating polyneuropathy (CIDP) is the most common, heterogeneous, immune-mediated neuropathy, characterized by predominant demyelination of motor and sensory nerves. CIDP follows a relapsing-remitting or a progressive course and causes substantial disability. The pathogenesis of CIDP involves a complex interplay of multiple aberrant immune responses, creating a pro-inflammatory environment, subsequently inflicting damage on the myelin sheath.
View Article and Find Full Text PDFA key aspect of nearly all single-cell sequencing experiments is dissociation of intact tissues into single-cell suspensions. While many protocols have been optimized for optimal cell yield, they have often overlooked the effects that dissociation can have on ex vivo gene expression. Here, we demonstrate that use of enzymatic dissociation on brain tissue induces an aberrant ex vivo gene expression signature, most prominently in microglia, which is prevalent in published literature and can substantially confound downstream analyses.
View Article and Find Full Text PDFRotating forms of suspension culture allow cells to aggregate into spheroids, prevent the de-differentiating influence of 2D culture, and, perhaps most importantly of all, provide physiologically relevant, in vivo levels of shear stress. Rotating suspension culture technology has not been widely implemented, in large part because the vessels are prohibitively expensive, labor-intensive to use, and are difficult to scale for industrial applications. Our solution addresses each of these challenges in a new vessel called a cell spinpod.
View Article and Find Full Text PDFMicroglia, the tissue-resident macrophages of the central nervous system (CNS), play critical roles in immune defense, development and homeostasis. However, isolating microglia from humans in large numbers is challenging. Here, we profiled gene expression variation in primary human microglia isolated from 141 patients undergoing neurosurgery.
View Article and Find Full Text PDFReceptor interacting protein kinase 1 (RIPK1) mediates cell death and inflammatory signaling and is increased in multiple sclerosis (MS) brain samples. Here, we investigate the role of glial RIPK1 kinase activity in mediating MS pathogenesis. We demonstrate RIPK1 levels correlate with MS disease progression.
View Article and Find Full Text PDFDrug-induced nephrotoxicity causes huge morbidity and mortality at massive financial cost. The greatest burden of drug-induced acute kidney injury falls on the proximal tubular cells. To maintain their structure and function, renal proximal tubular cells need the shear stress from tubular fluid flow.
View Article and Find Full Text PDFNeurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-β, the complement cascade, and the extracellular receptor TREM2.
View Article and Find Full Text PDFUnderstanding genome wide, tissue-specific, and spaceflight-induced changes in gene expression is critical to develop effective countermeasures. Transcriptome analysis has been performed on diverse tissues harvested from animals flown in space, but not the kidney. We determined the genome wide gene expression using a gene array analysis of kidney and liver tissue from mice flown in space for 12 days versus ground based control animals.
View Article and Find Full Text PDFMicroglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers.
View Article and Find Full Text PDFAnnu Rev Cell Dev Biol
October 2018
An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain-from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring-as well as some of the obstacles to overcome when assessing their contributions to normal brain development.
View Article and Find Full Text PDFWhile simple - (ether-linked) and -glucuronide drug conjugates generally are unreactive and considered benign from a safety perspective, the acyl glucuronides that derive from metabolism of carboxylic acid-containing xenobiotics can exhibit a degree of chemical reactivity that is dependent upon their molecular structure. As a result, concerns have arisen over the safety of acyl glucuronides as a class, several members of which have been implicated in the toxicity of their respective parent drugs. However, direct evidence in support of these claims remains sparse, and due to frequently encountered species differences in the systemic exposure to acyl glucuronides (both of the parent drug and oxidized derivatives thereof), coupled with their instability in aqueous media and potential to undergo chemical rearrangement (acyl migration), qualification of these conjugates by traditional safety assessment methods can be very challenging.
View Article and Find Full Text PDFBaker's yeast () has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or 'giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics.
View Article and Find Full Text PDFCytochrome 2B6 (CYP2B6) has substantial clinical effects on morbidity and mortality and its effects on drug metabolism should be part of hepatotoxicity screening. Examples of CYP2B6's impacts include its linkage to mortality during cyclophosphamide therapy and its role in determining hepatotoxicity and CNS toxicity during efavirenz therapy for HIV infection. CYP2B6 is key to metabolism of many common drugs from opioids to antidepressants, anesthetics, and anticonvulsants.
View Article and Find Full Text PDFThe medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors.
View Article and Find Full Text PDFMicroglia, the resident CNS macrophages, have been implicated in the pathogenesis of Rett Syndrome (RTT), an X-linked neurodevelopmental disorder. However, the mechanism by which microglia contribute to the disorder is unclear and recent data suggest that microglia do not play a causative role. Here, we use the retinogeniculate system to determine if and how microglia contribute to pathogenesis in a RTT mouse model, the Mecp2 null mouse (Mecp2(tm1.
View Article and Find Full Text PDF