Methionine aminopeptidase (MetAp) enzymes catalyze the post-translational removal of the initiator methionine residue in newly synthesized proteins, a process that is often essential in the maturation of proteins. Consequently, these enzymes serve as important targets for drug development. Rickettsia prowazekii (Rp) is an obligate coccobacillus and the causative agent of the louse-borne epidemic typhus and despite adequate treatment causes a latent infection.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
February 2024
The methylerythritol phosphate (MEP) pathway is a metabolic pathway that produces the isoprenoids isopentyl pyrophosphate and dimethylallyl pyrophosphate. Notably, the MEP pathway is present in bacteria and not in mammals, which makes the enzymes of the MEP pathway attractive targets for discovering new anti-infective agents due to the reduced chances of off-target interactions leading to side effects. There are seven enzymes in the MEP pathway, the third of which is IspD.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
June 2023
The compound ethyl-adenosyl monophosphate ester (ethyl-AMP) has been shown to effectively inhibit acetyl-CoA synthetase (ACS) enzymes and to facilitate the crystallization of fungal ACS enzymes in various contexts. In this study, the addition of ethyl-AMP to a bacterial ACS from Legionella pneumophila resulted in the determination of a co-crystal structure of this previously elusive structural genomics target. The dual functionality of ethyl-AMP in both inhibiting ACS enzymes and promoting crystallization establishes its significance as a valuable resource for advancing structural investigations of this class of proteins.
View Article and Find Full Text PDFNew antifungal therapies are needed for both systemic, invasive infections in addition to superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to nonsystemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2 to 16 μg/mL) against medically important yeasts and molds, including clinical isolates resistant to azoles and/or echinocandins.
View Article and Find Full Text PDFMethionine aminopeptidases (MetAp) are dinuclear metalloenzymes found in both prokaryotes and eukaryotes that catalyze the hydrolysis of the N-terminal methionine residue from nascent proteins, an important post-translational modification, which makes it an attractive target for drug discovery. Rickettsia prowazekii (Rp) is an obligate pathogen and causative agent of epidemic typhus and typhus fever. In our ongoing search for anti-rickettsial agents we screened 400 compounds from the Malaria Box for inhibition of RpMetAp1 and discovered 12 compounds that inhibited the enzyme with IC values ranging from 800 nM to 22 μM.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and is estimated to be the leading cause of death in the next 15 years. Patients with COPD suffer from persistent chronic cough, sputum production and exacerbations leading to deteriorating lung function, worsening quality of life and loss of independence. While evidence-based interventions exist to improve the well-being of patients with COPD, incorporation of these interventions into routine clinical care is challenging.
View Article and Find Full Text PDFNew antifungal therapies are needed for both systemic, invasive infections as well as superficial infections of mucosal and skin surfaces as well as biofilms associated with medical devices. The resistance of biofilm and biofilm-like growth phases of fungi contributes to the poor efficacy of systemic therapies to non-systemic infections. Here, we describe the identification and characterization of a novel keto-alkyl-pyridinium scaffold with broad spectrum activity (2-16 µg/mL) against medically important yeasts and moulds, including clinical isolates resistant to azoles and/or echinocandins.
View Article and Find Full Text PDFPraziquantel (PZQ) remains the only drug of choice for the treatment of schistosomiasis, caused by parasitic flatworms. The widespread use of PZQ in schistosomiasis endemic areas for about four decades raises concerns about the emergence of resistance of Schistosoma spp. to PZQ under drug selection pressure.
View Article and Find Full Text PDFAcetyl CoA synthetases (ACSs) are cyl-CoA/RPS/uciferase (ANL) superfamily enzymes that couple acetate with CoA to generate acetyl CoA, a key component of central carbon metabolism in eukaryotes and prokaryotes. Normal mammalian cells are not dependent on ACSs, while tumor cells, fungi, and parasites rely on acetate as a precursor for acetyl CoA. Consequently, ACSs have emerged as a potential drug target.
View Article and Find Full Text PDFThe enzyme 2-methylerythritol 2,4-cyclodiphosphate synthase, IspF, is essential for the biosynthesis of isoprenoids in most bacteria, some eukaryotic parasites, and the plastids of plant cells. The development of inhibitors that target IspF may lead to novel classes of anti-infective agents or herbicides. Enantiomers of tryptophan hydroxamate were synthesized and evaluated for binding to Burkholderia pseudomallei (Bp) IspF.
View Article and Find Full Text PDFEnzymes in the methylerythritol phosphate pathway make attractive targets for antibacterial activity due to their importance in isoprenoid biosynthesis and the absence of the pathway in mammals. The fifth enzyme in the pathway, 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), contains a catalytically important zinc ion in the active site. A series of de novo designed compounds containing a zinc binding group was synthesized and evaluated for antibacterial activity and interaction with IspF from Burkholderia pseudomallei, the causative agent of Whitmore's disease.
View Article and Find Full Text PDFNovel pyridine- and pyrimidine-based allosteric inhibitors are reported that achieve PDE4D subtype selectivity through recognition of a single amino acid difference on a key regulatory domain, known as UCR2, that opens and closes over the catalytic site for cAMP hydrolysis. The design and optimization of lead compounds was based on iterative analysis of X-ray crystal structures combined with metabolite identification. Selectivity for the activated, dimeric form of PDE4D provided potent memory enhancing effects in a mouse model of novel object recognition with improved tolerability and reduced vascular toxicity over earlier PDE4 inhibitors that lack subtype selectivity.
View Article and Find Full Text PDFJ Econ Entomol
March 2019
Filth flies, including house flies, Musca domestica L., develop in animal manure. Adult house flies often are controlled with pesticides such as imidacloprid.
View Article and Find Full Text PDFAims: Therapies that recapitulate the health benefits of caloric restriction in older adults are needed. Phosphodiesterase 4 inhibitors demonstrate such promise. We examined their effects on body weight and composition, physical and cognitive function in aged mice using Compound D159687 (D159687).
View Article and Find Full Text PDFMethionine aminopeptidase (MetAP) is a dinuclear metalloprotease responsible for the cleavage of methionine initiator residues from nascent proteins. MetAP activity is necessary for bacterial proliferation and is therefore a projected novel antibacterial target. A compound library consisting of 294 members containing metal-binding functional groups was screened against Rickettsia prowazekii MetAP to determine potential inhibitory motifs.
View Article and Find Full Text PDFThe title compound, CHClNOS, is related to a ditosylated 2-iminobenzothiazole with the two methyl groups on the two phenyl rings replaced by chlorine. There is a weak intramolecular - contact between the two phenyl rings, with a centroid-to-centroid distance of 4.004 (2) Å.
View Article and Find Full Text PDFDrug design and discovery remains a popular topic of study to many students interested in visible, real-world applications of the chemical sciences. It is important that laboratory experiments detailing the early stages of drug discovery incorporate both compound design and an exploration of ligand/receptor interactions. Molecular modeling is widely employed in research endeavors seeking to predict the activity of potential compounds prior to synthesis and can therefore be used to illustrate these concepts.
View Article and Find Full Text PDFMethionine aminopeptidase (MetAP) is a class of ubiquitous enzymes essential for the survival of numerous bacterial species. These enzymes are responsible for the cleavage of N-terminal formyl-methionine initiators from nascent proteins to initiate post-translational modifications that are often essential to proper protein function. Thus, inhibition of MetAP activity has been implicated as a novel antibacterial target.
View Article and Find Full Text PDFMethionine aminopeptidases (MetAPs) are metalloenzymes that cleave the N-terminal methionine from newly synthesized peptides and proteins. These MetAP enzymes are present in bacteria, and knockout experiments have shown that MetAP activity is essential for cell life, suggesting that MetAPs are good antibacterial drug targets. MetAP enzymes are also present in the human host and selectivity is essential.
View Article and Find Full Text PDFA series of novel aminoalkylated quercetin analogs, prepared via the Mannich reaction of various primary and secondary amines with formaldehyde, were tested for antimalarial activity. The compounds were screened against three drug resistant malarial strains (D6, C235 and W2) and were found to exhibit sub-micromolar activity across all three strains (0.065-13.
View Article and Find Full Text PDFIn this study we report a series of triazine derivatives that are potent inhibitors of PDE4B. We also provide a series of structure activity relationships that demonstrate the triazine core can be used to generate subtype selective inhibitors of PDE4B versus PDE4D. A high resolution co-crystal structure shows that the inhibitors interact with a C-terminal regulatory helix (CR3) locking the enzyme in an inactive 'closed' conformation.
View Article and Find Full Text PDFEvaluation of a series of MetAP inhibitors in an in vitro enzyme activity assay led to the first identification of potent molecules that show significant growth inhibition against Burkholderia pseudomallei. Nitroxoline analogs show excellent inhibition potency in the BpMetAP1 enzyme activity assay with the lowest IC of 30 nM, and inhibit the growth of B. pseudomallei and B.
View Article and Find Full Text PDF