Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily.
View Article and Find Full Text PDFRev1 is a translesion DNA synthesis (TLS) polymerase involved in the bypass of adducted-guanine bases and abasic sites during DNA replication. During damage bypass, Rev1 utilizes a protein-template mechanism of DNA synthesis, where the templating DNA base is evicted from the Rev1 active site and replaced by an arginine side chain that preferentially binds incoming dCTP. Here, we utilize X-ray crystallography and molecular dynamics simulations to obtain structural insight into the dCTP specificity of Rev1.
View Article and Find Full Text PDFRibonucleotides (rNTPs) are predicted to be incorporated into the genome at a rate of up to 3 million times per cell division, making rNTPs the most common non-standard nucleotide in the human genome. Typically, misinserted ribonucleotides are repaired by the ribonucleotide excision repair (RER) pathway, which is initiated by RNase H2 cleavage. However, rNTPs are susceptible to spontaneous depurination generating abasic ribonucleotides (rAPs), which are unable to be processed by RNase H2.
View Article and Find Full Text PDFCopZ is a copper chaperone from Bacillus subtilis. It is an important part of Cu(I) trafficking. We have calculated pK(a) values for the CXXC motif of this protein, which is responsible for the Cu(I) binding, and the Cu(I) binding constants.
View Article and Find Full Text PDFWe have explored the suitability of fixed-charges and polarizable force fields for modeling interactions of the monovalent Cu(I) ion. Parameters for this ion have been tested and refitted within the fixed-charges OPLS-AA and polarizable force field (PFF) frameworks. While this ion plays an important role in many protein interactions, the attention to it in developing empirical force fields is limited.
View Article and Find Full Text PDFWe have simulated pure liquid butane, methanol, and hydrated alanine polypeptide with the Monte Carlo technique using three kinds of random number generators (RNG's)-the standard Linear Congruential Generator (LCG), a modification of the LCG with additional randomization used in the BOSS software, and the "Mersenne Twister" generator by Matsumoto and Nishimura. While using the latter two RNG's leads to reasonably similar physical features, the LCG produces significant different results. For the pure fluids, a noticeable expansion occurs.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) are a newly recognized class of functional proteins that rely on a lack of stable structure for function. They are highly prevalent in biology, play fundamental roles, and are extensively involved in human diseases. For signaling and regulation, IDPs often fold into stable structures upon binding to specific targets.
View Article and Find Full Text PDFWe have extended our previous studies of calculating acidity constants for the acidic residues found in the turkey ovomucoid third domain protein (OMTKY3) by determining the relative pKa values for the basic residues (Lys13, Arg21, Lys29, Lys34, His52, and Lys55). A polarizable force field (PFF) was employed. The values of the pKa were found by direct comparison of energies of solvated protonated and deprotonated forms of the protein.
View Article and Find Full Text PDF