Publications by authors named "Timothy H Bayburt"

Conformational equilibria of G-protein-coupled receptors (GPCRs) are intimately involved in intracellular signaling. Here conformational substates of the GPCR rhodopsin are investigated in micelles of dodecyl maltoside (DDM) and in phospholipid nanodiscs by monitoring the spatial positions of transmembrane helices 6 and 7 at the cytoplasmic surface using site-directed spin labeling and double electron-electron resonance spectroscopy. The photoactivated receptor in DDM is dominated by one conformation with weak pH dependence.

View Article and Find Full Text PDF

We have designed and implemented a practical nanoelectronic interface to G-protein coupled receptors (GPCRs), a large family of membrane proteins whose roles in the detection of molecules outside eukaryotic cells make them important pharmaceutical targets. Specifically, we have coupled olfactory receptor proteins (ORs) with carbon nanotube transistors. The resulting devices transduce signals associated with odorant binding to ORs in the gas phase under ambient conditions and show responses that are in excellent agreement with results from established assays for OR-ligand binding.

View Article and Find Full Text PDF

Naturally occurring photosynthetic systems use elaborate pathways of self-repair to limit the impact of photo-damage. Here, we demonstrate a complex consisting of two recombinant proteins, phospholipids and a carbon nanotube that mimics this process. The components self-assemble into a configuration in which an array of lipid bilayers aggregate on the surface of the carbon nanotube, creating a platform for the attachment of light-converting proteins.

View Article and Find Full Text PDF

G-protein-coupled receptor (GPCR) oligomerization has been observed in a wide variety of experimental contexts, but the functional significance of this phenomenon at different stages of the life cycle of class A GPCRs remains to be elucidated. Rhodopsin (Rh), a prototypical class A GPCR of visual transduction, is also capable of forming dimers and higher order oligomers. The recent demonstration that Rh monomer is sufficient to activate its cognate G protein, transducin, prompted us to test whether the same monomeric state is sufficient for rhodopsin phosphorylation and arrestin-1 binding.

View Article and Find Full Text PDF

Nanodiscs are soluble nanoscale phospholipid bilayers which can self-assemble integral membrane proteins for biophysical, enzymatic or structural investigations. This means for rendering membrane proteins soluble at the single molecule level offers advantages over liposomes or detergent micelles in terms of size, stability, ability to add genetically modifiable features to the Nanodisc structure and ready access to both sides of the phospholipid bilayer domain. Thus the Nanodisc system provides a novel platform for understanding membrane protein function.

View Article and Find Full Text PDF

Nanodiscs are nanometer scale planar membranes of controlled size that are rendered soluble in aqueous solution via an encircling amphipathic membrane scaffold protein "belt" (Bayburt, T. H., Grinkova, Y.

View Article and Find Full Text PDF

Integral membrane G protein-coupled receptors (GPCRs) compose the single most prolific class of drug targets, yet significant functional and structural questions remain unanswered for this superfamily. A primary reason for this gap in understanding arises from the difficulty of forming soluble, monodisperse receptor membrane preparations that maintain the transmembrane signaling activity of the receptor and provide robust biophysical and biochemical assay systems. Here we report a technique for self-assembling functional beta2-adrenergic receptor (beta2AR) into a nanoscale phospholipid bilayer system (Nanodisc) that is highly soluble in aqueous solution.

View Article and Find Full Text PDF

Nanodiscs, phospholipid bilayer assemblies of controlled size, were used to self-assemble bacteriorhodopsin (bR) into single trimers. Self-assembly at optimal bR to Nanodisc and phospholipid stoichiometry yielded particles containing three bR molecules. Analysis of solution small angle X-ray scattering indicated that bacteriorhodopsin is embedded in a discoidal phospholipid bilayer structure.

View Article and Find Full Text PDF

One of the biggest challenges in pharmaceutical research is obtaining integral membrane proteins in a functional, solubilized, and monodisperse state that provides a native-like environment that maintains the spectrum of in vivo activities. Many of these integral membrane proteins are receptors, enzymes, or other macromolecular assemblies that are important drug targets. An example is the general class of proteins composed of seven-transmembrane segments (7-TM) as exemplified by the G-protein-coupled receptors.

View Article and Find Full Text PDF

One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaffold protein (MSP). Using microsomal membranes of baculovirus-infected Spodoptera frugiperda (Sf9) insect cells overexpressing an N-terminally anchored cytochrome P450 monoxygenase (P450), we demonstrate that target membrane proteins can be directly solubilized and incorporated into distinct populations of Nanodiscs, which can be separated by size chromatography.

View Article and Find Full Text PDF

The architecture of membrane proteins in their native environment of the phospholipid bilayer is critical for understanding physiological function, but has been difficult to realize experimentally. In this communication we describe the incorporation of a membrane-anchored protein into a supported phospholipid bilayer. Cytochrome P450 2B4 solubilized and purified from the hepatic endoplasmic reticulum was incorporated into phospholipid bilayer nanostructures and oriented on a surface for visualization by atomic force microscopy.

View Article and Find Full Text PDF