Immediately following hurricane Katrina concern was raised over the environmental impact of floodwaters on the city of New Orleans, especially in regard to human health. Several studies were conducted to determine the actual contaminant distribution throughout the city and surrounding wetlands by analyzing soil, sediment, and water for a variety of contaminants including organics, inorganics, and biologics. Preliminary investigations by The Institute of Environmental and Human Health at Texas Tech University concluded that soils and sediments contained pesticides, semi-volatiles, and metals, specifically arsenic, iron, and lead, at concentrations that could pose a significant risk to human health.
View Article and Find Full Text PDFMolecular imaging is a powerful tool that has the ability to elucidate biochemical mechanisms and signal the early onset of disease. Overexpression of the peripheral benzodiazepine receptor (PBR) has been observed in a variety disease states, including glioblastoma, breast cancer, and Alzheimer's disease. Thus, the PBR could be an attractive target for molecular imaging.
View Article and Find Full Text PDFLanthanide chelates are a somewhat unique class of molecules that have proven to be useful in the biomedical field due to their extremely large Stokes' shift and long fluorescent lifetimes. The ability of these molecules to produce fluorescence in the low- or zero-back-ground regime makes this class of molecules excellent candidates for use as contrast agents for a wide variety of applications in biological settings. Here we present the preparation, spectroscopic characterization, and application of a new terbium chelate contrast agent, based on the 1,4,7,10-tetraazacyclododecane macrocycle (cyclen), for detection of early-stage malignant lesions in the Syrian hamster cheek pouch.
View Article and Find Full Text PDF[reaction: see text] Receptor-mediated imaging and therapy of diseased tissue is rapidly gaining favor in the medical community. The synthesis and facile aqueous/organic coupling of a peripheral-type benzodiazepine receptor ligand to a cyclen-based fluorophore is described herein. The contrast agent QM-CTMC-PK11195, when chelated with lanthanides, produces bright luminescence and good MRI contrast and can potentially serve as an imaging and demarcation agent for certain types of cancers.
View Article and Find Full Text PDF