Generating high-coverage sequencing coverage at select genomic loci has extensive applications in both research science and genetic medicine. Long-read sequencing technologies (e.g.
View Article and Find Full Text PDFThe mitochondrial genome (mtDNA) is an important source of disease-causing genetic variability, but existing sequencing methods limit understanding, precluding phased measurement of mutations and clear detection of large sporadic deletions. We adapted a method for amplification-free sequence enrichment using Cas9 cleavage to obtain full length nanopore reads of mtDNA. We then utilized the long reads to phase mutations in a patient with an mtDNA-linked syndrome and demonstrated that this method can map age-induced mtDNA deletions.
View Article and Find Full Text PDFProbing epigenetic features on DNA has tremendous potential to advance our understanding of the phased epigenome. In this study, we use nanopore sequencing to evaluate CpG methylation and chromatin accessibility simultaneously on long strands of DNA by applying GpC methyltransferase to exogenously label open chromatin. We performed nanopore sequencing of nucleosome occupancy and methylome (nanoNOMe) on four human cell lines (GM12878, MCF-10A, MCF-7 and MDA-MB-231).
View Article and Find Full Text PDFTelomerase reverse transcriptase () promoter mutations play a role in carcinogenesis and are found in both tumors and cancer cell lines. promoter methylation, transcription factor binding, chromatin remodeling, and alternative splicing are also known to play an integral role in regulation. Using nanopore Cas9 targeted sequencing, we characterized allele-specific methylation in thyroid cancer cell lines heterozygous for the promoter mutation.
View Article and Find Full Text PDFDespite recent improvements in sequencing methods, there remains a need for assays that provide high sequencing depth and comprehensive variant detection. Current methods are limited by the loss of native modifications, short read length, high input requirements, low yield or long protocols. In the present study, we describe nanopore Cas9-targeted sequencing (nCATS), an enrichment strategy that uses targeted cleavage of chromosomal DNA with Cas9 to ligate adapters for nanopore sequencing.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFHigh-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies.
View Article and Find Full Text PDFTelomerase reverse transcriptase (TERT) activation plays an important role in cancer development by enabling the immortalization of cells. TERT regulation is multifaceted, and its promoter methylation has been implicated in controlling expression through alteration in transcription factor binding. We have characterized TERT promoter methylation, transcription factor binding, and TERT expression levels in five differentiated thyroid cancer (DTC) cell lines and six normal thyroid tissue samples by targeted bisulfite sequencing, ChIP-qPCR, and qRT-PCR.
View Article and Find Full Text PDFMembers of the miR-290 family are the most abundantly expressed microRNAs (miRNAs) in mouse embryonic stem cells (ESCs). They regulate aspects of differentiation, pluripotency, and proliferation of ESCs, but the molecular program that they control has not been fully delineated. In the absence of Dicer, ESCs fail to express mature miR-290 miRNAs and have selective aberrant overexpression of Hoxa, Hoxb, Hoxc, and Hoxd genes essential for body plan patterning during embryogenesis, but they do not undergo a full differentiation program.
View Article and Find Full Text PDFMYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc.
View Article and Find Full Text PDF