Production of phosphoric acid generates a calcium sulfate byproduct known as phosphogypsum (PG). PG is not considered a suitable standalone road base material because of concerns such as strength and presence of radionuclides. This paper investigates the latter, specifically the influence of blending PG with common alkaline road base aggregates - limerock (LR) and recycled concrete aggregate (RCA) - on radionuclide leaching.
View Article and Find Full Text PDFThe incineration of municipal solid waste (MSW) produces byproducts known as MSW incineration (MSWI) ash. The reuse of MSWI ash as a construction material prevails in several areas of the world, namely Europe and Asia, however, reuse in the United States (US) lags due to regulatory requirements for disposal practices. Developing a recycling program for MSWI ash provides an alternative end-of-life disposal scenario for material currently landfilled and supplements the reliability of mining of natural aggregates.
View Article and Find Full Text PDFWaste Manag
October 2024
The optimization of alternative materials in concrete production continues to garner considerable attention in order to meet sustainability goals and supplement natural materials. Portland limestone cement (PLC) and municipal solid waste incineration (MSWI) bottom ash (BA) have been proposed separately as green cement and coarse aggregate supplement in low-strength concrete production, creating sustainable products and alternative disposal scenario for a waste material. This study discusses the impact of advanced ash processing techniques on aggregates and presents the performance of concrete incorporating both of these products with PLC for the first time.
View Article and Find Full Text PDFThis study explored the effect stage number and plant type have on ammonia-nitrogen (NH-N) removal kinetics in a two-stage pilot-scale vertical flow constructed wetland (VFCW) system treating landfill leachate. Half of the VFCW columns were planted with Typha latifolia and the other half Scirpus californicus, and half of the columns were loaded with municipal solid waste landfill leachate (diluted to 1 part leachate to 2 parts total) with the effluent from these columns was collected in two separate barrels. The remaining columns were loaded with the effluent collected from the first columns, creating a two-stage VFCW system with four unique pairs to be tested.
View Article and Find Full Text PDFAs regulatory frameworks for per- and polyfluoroalkyl substances (PFAS) evolve, the solid waste community seeks to manage PFAS risks effectively. Despite extensive research on PFAS in municipal solid waste (MSW) and wastewater sludge, there is limited information on a major global waste stream which seldom gleans regulatory oversight - construction and demolition debris (CDD). This study sampled a CDD processing facility to provide material-specific information on the PFAS profile within CDD.
View Article and Find Full Text PDFThermal landfill leachate evaporator systems can reduce the volume of leachate by up to 97%, while releasing water vapor and producing residuals (volume-reduced leachate and sludge) that are managed on-site. On-site thermal evaporators offer landfill operators leachate management autonomy without being subject to increasingly stringent wastewater treatment plant requirements. However, little is known about the partitioning of PFAS within these systems, nor the extent to which PFAS may be emitted into the environment via vapor.
View Article and Find Full Text PDFElevated per- and polyfluoroalkyl substance (PFAS) concentrations have been reported in municipal solid waste (MSW) landfill leachate with higher levels in wet and warmer subtropical climates. Information about landfill leachate characteristics is much more limited in tropical climates. In this study, 20 landfill leachate samples were collected from three MSW landfills on the tropical island of Puerto Rico and results were compared against landfills nationally and within Florida, USA.
View Article and Find Full Text PDFIn recent years, soil screening levels have been adopted by regulatory agencies for certain per- and polyfluoroalkyl substances (PFAS) to assess the risk of groundwater contamination through leaching. These soil screening levels, determined using an established equilibrium-based partitioning equation, have high variability among regulatory groups largely attributed to the diverse reported partitioning coefficients in the literature. This variability between reported partitioning coefficients, and subsequently soil screening levels, is due to the complex leaching behavior of PFAS not being predicted well by the standard equilibrium-based model.
View Article and Find Full Text PDFComposting municipal food waste is a key strategy for beneficially reusing methane-producing waste that would otherwise occupy landfill space. However, land-applied compost can cycle per- and polyfluoroalkyl substances (PFAS) back into the food supply and the environment. We partnered with a pilot-scale windrow composting facility to investigate the sources and fate of 40 PFAS in food waste compost.
View Article and Find Full Text PDFPER: and polyfluoroalkyl substances (PFAS) have been measured in aqueous components within landfills. To date, the majority of these studies have been conducted in Florida. This current study aimed to evaluate PFAS concentrations in aqueous components (leachate, gas condensate, stormwater, and groundwater) from four landfills located outside of Florida, in Pennsylvania, Colorado, and Wisconsin (2 landfills).
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) have been found at high levels within landfill environments. To assess PFAS distributions, this study aimed to evaluate PFAS mass flux leached from disposed solid waste and within landfill reservoirs by mass balance analyses for two full-scale operational Florida landfills. PFAS mass flux in different aqueous components within landfills were estimated based on PFAS concentrations and water flow rates.
View Article and Find Full Text PDFStudies of per- and polyfluoroalkyl substances (PFAS) fluctuations at landfills have focused on municipal solid waste (MSW) leachate. Few studies exist that evaluate fluctuations (defined by the coefficient of variation, CV) in MSW incinerator ash (MSWA) landfill leachate and that evaluate PFAS fluctuations in stormwater, groundwater, and treated liquids on-site. In this study, aqueous landfill samples (leachate, treated leachate, stormwater, gas condensate, ambient groundwater, and effluent from a groundwater remediation system) were collected from a MSW and an MSWA landfill geographically located within close proximity (less than 40 km).
View Article and Find Full Text PDFWith regulations for per-and polyfluoroalkyl substances (PFAS) impending, the abundance of these chemicals of emerging concern in municipal solid waste (MSW) landfill leachate increasingly challenges landfill operators to seek on-site leachate pre-treatment options. This two-staged study explores the potential reuse of biochar derived from construction and demolition debris (CDD) wood as an in-situ PFAS sorbent for application within MSW landfill leachate collection systems. Batch leaching tests were first used to examine the feasibility of capturing PFAS from landfill leachate using two sources of CDD-wood-derived biochar.
View Article and Find Full Text PDFJ Environ Eng (New York)
September 2023
The leachate collection system (LCS) and leak detection system (LDS) flow rate data from 240 cells (or a combination of cells) at 54 municipal solid-waste landfills (located in seven US states) with double-liner systems were analyzed to assess the performance of the primary liner system. The average LCS leachate collection rates for the study sites ranged from 380 L ha day (40.7 gal.
View Article and Find Full Text PDFThis study analyzed spent activated carbon (AC) from a landfill gas (LFG) treatment system for an expanded suite of lesser studied volatile metals, revealing elevated levels of As and Sb in the LFG, exceeding those previously reported, with minimum average concentrations of 640 µg m and 590 µg m, respectively. The annual release of As and Sb through landfill gas was found to be significant, surpassing leachate emissions by an order of magnitude. Extrapolating these findings to all US landfills suggests that the release of As and Sb through landfill gas could be a major, previously overlooked source of these metals in global emission estimates, underscoring the need to include them when developing future inventories.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are widespread, persistent environmental contaminants that have been linked to various health issues. Comprehensive PFAS analysis often relies on ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC HRMS) and molecular fragmentation (MS/MS). However, the selection and fragmentation of ions for MS/MS analysis using data-dependent analysis results in only the topmost abundant ions being selected.
View Article and Find Full Text PDFThis study explores modifying a sandy soil with a low solid to liquid partitioning coefficient (K) by adding amendments including iron-rich industrial slag byproducts and biochars, which contain sorption sites for trace metals present in MSWI ash leachate (notably Sb, cited as a concern for reuse applications). K values for Sb were determined for the sandy soil to be as low as 1.6 ± 0.
View Article and Find Full Text PDFConcentrations of 25 inorganic elements were measured in both bulk ash and individual ash components from residuals at three municipal solid waste incineration (MSWI) facilities in the US (two combined ash (CA) and one bottom ash (BA)). Concentrations were assessed based on particle size and component to understand the contribution from each fraction. The results found that among facilities, the finer size fractions contained elevated concentrations of trace elements of concern (As, Pb, Sb) when compared to the coarse fraction, but concentrations varied among facilities depending on the type of ash and differences in advanced metals recovery processes.
View Article and Find Full Text PDFThe environmental risks associated with the storage, reuse, and disposal of unencapsulated reclaimed asphalt pavement (RAP) has been previously examined, but because of a lack of standardized column testing protocols and recent interest on emerging constituents with higher toxicity, questions surrounding leaching risks from RAP continue. To address these concerns, RAP from six, discrete stockpiles in Florida was collected and leach tested following the most up-to-date, standard column leaching protocol - United States Environmental Protection Agency (US EPA) Leaching Environmental Assessment Framework (LEAF) Method 1314. Sixteen EPA priority polycyclic aromatic hydrocarbons (PAHs), 23 emerging PAHs, identified through relevance in literature, and heavy metals were investigated.
View Article and Find Full Text PDFVariable chemistries of liquids from landfills can potentially impact levels of per- and polyfluoroalkyl substances (PFAS). The objective of the current study was to evaluate relationships between physical-chemical properties (bulk measurements, oxygen demand components, and metals) and PFAS concentrations in different types of aqueous landfill samples. Aqueous landfill samples were collected from 39 landfill facilities in Florida, United States.
View Article and Find Full Text PDFThis study investigated the behavior of per- and polyfluoroalkyl substances (PFAS) in multiple pilot-scale vertical flow constructed wetlands (VFCW) treating landfill leachate. Eight pilot-scale VFCW columns planted with Typha latifolia or Scirpus Californicus were fed untreated municipal solid waste (MSW) landfill leachate that was diluted with potable water at a 1:10 ratio (1 part leachate to 10 parts total) at a fixed daily hydraulic loading rate of 0.525 m d.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) are ubiquitously present in our indoor living environments. Dust is thought to accumulate PFAS released indoors and serve as an exposure pathway for humans. Here, we investigated whether spent air conditioning (AC) filters can be exploited as opportunistic samplers of airborne dust for assessing PFAS burden in indoor environments.
View Article and Find Full Text PDFWhile per- and polyfluoroalkyl substances (PFAS) have been reported extensively in municipal solid waste (MSW) landfill leachate,they have rarely been quantified in landfill gas or in discrete landfill liquids such as landfill gas condensate (LGC), and the potential for PFAS to partition to the condensate has not been reported. LGC and leachate collected from within gas wells known as gas well pump-out (GWP) from three MSW landfills underwent physical-chemical characterization and PFAS analysis to improve understanding of the conditions under which these liquids form and to illuminate PFAS behavior within landfills. LGC was observed to be clear liquid containing ammonia and alkalinity while GWP strongly resembled leachate - dark in color, high in chloride and ammonia.
View Article and Find Full Text PDFWastewater treatment plants generate a solid waste known as biosolids. The most common management option for biosolids is to beneficially reuse them as an agricultural amendment, but because of the risk of pathogen exposure, many regulatory bodies require pathogen reduction before biosolids reuse. Per- and polyfluoroalkyl substances (PFAS) are well documented in biosolids, but limited information is available on how biosolids treatment processes impact PFAS.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS), found in many consumer products, are commonly disposed of in landfills at the end of their service lives. To identify landfill liquids that should be prioritized for treatment, this study aimed to evaluate PFAS levels in different aqueous samples from landfills and identify relationships between PFAS and landfill characteristics. Twenty-six PFAS including 11 perfluoroalkyl carboxylic acids (PFCAs), 7 perfluoroalkyl sulfonates (PFSAs), and 8 perfluoroalkyl acid precursors (PFAA-precursors) were measured in municipal solid waste (MSW) leachate, construction and demolition debris (CDD) leachate, municipal solid waste incineration (MSWI) ash leachate, gas condensate, stormwater, and groundwater from landfills.
View Article and Find Full Text PDF