Publications by authors named "Timothy G Angelini"

Abdominal aortic aneurysm (AAA) is a silent, progressive disease with a high mortality and an increasing prevalence with aging. Smooth muscle cell (SMC) dysfunction contributes to gradual dilatation and eventual rupture of the aorta. Here we studied phenotypic characteristics in SMC cultured from end-stage human AAA (≥5 cm) and cells cultured from a porcine carotid artery (PCA) model of early and end-stage aneurysm.

View Article and Find Full Text PDF

An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair.

View Article and Find Full Text PDF

Diabetes mellitus is the most common metabolic disorder and is recognised as a dominant health threat of our time. Diabetes induces a widespread damage of the macro- and microvasculature in different organs and tissues and disrupts the endogenous vascular repair mechanisms, thus causing diffuse and severe complications. Moreover, diabetic patients respond poorly to surgical interventions aiming to "revascularise" (i.

View Article and Find Full Text PDF

Background: Vascular smooth muscle cells (SMC) are central to arterial structure and function yet their involvement in the progression of abdominal aortic aneurysm (AAA) disease is not well studied. The progressive and silent nature of AAA in man essentially restricts research to the use of "end-stage" tissue recovered during surgical repair. This study aimed to generate an ex vivo model of AAA using protease-treated porcine carotid arteries maintained in a novel bioreactor, and to compare the structural and functional changes in SMC cultured from the recovered vessels with those from human tissue acquired at elective surgical repair.

View Article and Find Full Text PDF