Publications by authors named "Timothy Ferdelman"

Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG).

View Article and Find Full Text PDF

Thaumarchaeotal nitrifiers are among the most abundant organisms in the ocean, but still unknown is the carbon (C) yield from nitrification and the coupling of these fluxes to phosphorus (P) turnover and release of metabolites from the cell. Using a dual radiotracer approach, we found that fixed roughly 0.3 mol C, assimilated 2 mmol P, and released ca.

View Article and Find Full Text PDF

The genomes of the Asgard superphylum of Archaea hold clues pertaining to the nature of the host cell that acquired the mitochondrion at the origin of eukaryotes. Representatives of the Asgard candidate phylum Candidatus Lokiarchaeota (Lokiarchaeon) have the capacity for acetogenesis and fermentation, but how their metabolic activity responds to environmental conditions is poorly understood. Here, we show that in anoxic Namibian shelf sediments, Lokiarchaeon gene expression levels are higher than those of bacterial phyla and increase with depth below the seafloor.

View Article and Find Full Text PDF
Article Synopsis
  • Members of the epsilonproteobacterial genus are significant sulfide oxidizers in marine environments, particularly in areas like the productive upwelling waters off the coast of Peru, where they comprise a notable percentage of the microbial community.
  • A newly isolated species showed the ability to oxidize sulfide and denitrify, but it cannot fix carbon dioxide through autotrophic means, relying instead on organic carbon such as acetate for growth.
  • This research sheds light on the metabolic versatility of this species and its potential ecological role in oxygen minimum zones, suggesting it could thrive in nutrient-rich and sulfide-laden waters.
View Article and Find Full Text PDF

Dinitrogen (N) fixation is a major source of external nitrogen (N) to aquatic ecosystems and therefore exerts control over productivity. Studies have shown that N -fixers release freshly fixed N into the environment, but the causes for this N release are largely unclear. Here, we show that the availability of phosphate can directly affect the transfer of freshly fixed N to epibionts in filamentous, diazotrophic cyanobacteria.

View Article and Find Full Text PDF

The South Pacific Gyre (SPG) covers 10% of the ocean's surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence hybridization and automated cell enumeration. We tested the pipeline during the SO-245 "UltraPac" cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres.

View Article and Find Full Text PDF

Analyses of microbial diversity in marine sediments have identified a core set of taxa unique to the marine deep biosphere. Previous studies have suggested that these specialized communities are shaped by processes in the surface seabed, in particular that their assembly is associated with the transition from the bioturbated upper zone to the nonbioturbated zone below. To test this hypothesis, we performed a fine-scale analysis of the distribution and activity of microbial populations within the upper 50 cm of sediment from Aarhus Bay (Denmark).

View Article and Find Full Text PDF

Single-cell measurements of biochemical processes have advanced our understanding of cellular physiology in individual microbes and microbial populations. Due to methodological limitations, little is known about single-cell phosphorus (P) uptake and its importance for microbial growth within mixed field populations. Here, we developed a nanometer-scale secondary ion mass spectrometry (nanoSIMS)-based approach to quantify single-cell P uptake in combination with cellular CO and N fixation.

View Article and Find Full Text PDF

Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called "cryptic sulfur cycle". We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques.

View Article and Find Full Text PDF

In the biogeochemical nitrogen cycle, microbial respiration processes compete for nitrate as an electron acceptor. Denitrification converts nitrate into nitrogenous gas and thus removes fixed nitrogen from the biosphere, whereas ammonification converts nitrate into ammonium, which is directly reusable by primary producers. We combined multiple parallel long-term incubations of marine microbial nitrate-respiring communities with isotope labeling and metagenomics to unravel how specific environmental conditions select for either process.

View Article and Find Full Text PDF

The coupling of subseafloor microbial life to oceanographic and atmospheric conditions is poorly understood. We examined diagenetic imprints and lipid biomarkers of past subseafloor microbial activity to evaluate its response to glacial-interglacial cycles in a sedimentary section drilled on the Peruvian shelf (Ocean Drilling Program Leg 201, Site 1229). Multiple and distinct layers of diagenetic barite and dolomite, i.

View Article and Find Full Text PDF

Microbial sulfate reduction (SR) is a dominant process of organic matter mineralization in sulfate-rich anoxic environments at neutral pH. Recent studies have demonstrated SR in low pH environments, but investigations on the microbial activity at variable pH and CO2 partial pressure are still lacking. In this study, the effect of pH and pCO2 on microbial activity was investigated by incubation experiments with radioactive (35)S targeting SR in sediments from the shallow-sea hydrothermal vent system of Milos, Greece, where pH is naturally decreased by CO2 release.

View Article and Find Full Text PDF

Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments.

View Article and Find Full Text PDF

Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S(0)) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea.

View Article and Find Full Text PDF

The influence of hydrostatic pressure on microbial sulfate reduction (SR) was studied using sediments obtained at cold seep sites from 5500 to 6200 m water depth of the Japan Trench. Sediment samples were stored under anoxic conditions for 17 months in slurries at 4°C and at in situ pressure (50 MPa), at atmospheric pressure (0.1 MPa), or under methanic conditions with a methane partial pressure of 0.

View Article and Find Full Text PDF

We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral.

View Article and Find Full Text PDF

Microbial heterotrophic activity was investigated in oxic sub-seafloor sediments at North Pond, a sediment pond situated at 23°N on the western flank of the Mid-Atlantic Ridge. The North Pond sediments underlie the oligotrophic North Atlantic Gyre at 4580-m water depth and cover a 7-8 million-year-old basaltic crust aquifer through which seawater flows. Discrete samples for experimentation were obtained from up to ~9 m-long gravity cores taken at 14 stations in the North Pond area.

View Article and Find Full Text PDF

Oceanic subtropical gyres are considered biological deserts because of the extremely low availability of nutrients and thus minimum productivities. The major source of nutrient nitrogen in these ecosystems is N(2)-fixation. The South Pacific Gyre (SPG) is the largest ocean gyre in the world, but measurements of N(2)-fixation therein, or identification of microorganisms involved, are scarce.

View Article and Find Full Text PDF

Microbial degradation of substrates to terminal products is commonly understood as a unidirectional process. In individual enzymatic reactions, however, reversibility (reverse reaction and product back flux) is common. Hence, it is possible that entire pathways of microbial degradation are associated with back flux from the accumulating product pool through intracellular intermediates into the substrate pool.

View Article and Find Full Text PDF

Subseafloor sedimentary environments harbor remarkably diverse microbial communities. However, it remains unknown if the deeply buried fossils in these sediments play ecological roles in deep microbial habitats, or whether the microbial communities inhabiting such fossils differ from those in the surrounding sediment matrix. Here we compare the community structures of subseafloor microbes in cold-water coral carbonates (Madrepora oculata and Lophelia pertusa) and the clay matrix.

View Article and Find Full Text PDF

The effect of NO(3)(-) addition on dissimilatory SO(4)(2-) reduction and sulfide conversion in organic-rich sludge from the digestion basin of a recirculating marine aquaculture system was studied. SO(4)(2-) reduction could only explain a minor fraction (up to 4-9%) of the observed total sulfide production (up to 35 mmol L(-1) day(-1)), indicating that the main source of sulfide in the sludge was not SO(4)(2-) reduction, but desulfuration during the decomposition of organic matter. Although NO(3)(-) inhibited SO(4)(2-) reduction, but not desulfuration, the primary NO(3)(-) mitigation effect was the onset of NO(3)(-)-mediated sulfide oxidation (up to 75 mmol L(-1) day(-1)), partially to elemental sulfur (S(0)).

View Article and Find Full Text PDF

Novel high-pressure biotechnical systems that were developed and applied for the study of anaerobic oxidation of methane (AOM) are described. The systems, referred to as high-pressure continuous incubation system (HP-CI system) and high-pressure manifold-incubation system (HP-MI system), allow for batch, fed-batch, and continuous gas-phase free incubation at high concentrations of dissolved methane and were designed to meet specific demands for studying environmental regulation and kinetics as well as for enriching microbial biomass in long-term incubation. Anoxic medium is saturated with methane in the first technical stage, and the saturated medium is supplied for biomass incubation in the second stage.

View Article and Find Full Text PDF

Microorganisms have been repeatedly discovered in environments that do not support their metabolic activity. Identifying and quantifying these misplaced organisms can reveal dispersal mechanisms that shape natural microbial diversity. Using endospore germination experiments, we estimated a stable supply of thermophilic bacteria into permanently cold Arctic marine sediment at a rate exceeding 10(8) spores per square meter per year.

View Article and Find Full Text PDF

The low-productivity South Pacific Gyre (SPG) is Earth's largest oceanic province. Its sediment accumulates extraordinarily slowly (0.1-1 m per million years).

View Article and Find Full Text PDF