Publications by authors named "Timothy E Weaver"

Susceptibility to inflammatory bowel diseases (IBDs), Crohn's disease (CD), and ulcerative colitis (UC) is linked with loss of intestinal epithelial barrier integrity and mitochondria dysfunction. Steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain-containing protein 7 (STARD7) is a phosphatidylcholine-specific (PC-specific) lipid transfer protein that transports PC from the ER to the mitochondria, facilitating mitochondria membrane stabilization and respiration function. The aim of this study was to define the contribution of STARD7 in the regulation of the intestinal epithelial mitochondrial function and susceptibility to colitis.

View Article and Find Full Text PDF
Article Synopsis
  • The SFTPC gene mutation (SFTPCI73T) is a major cause of interstitial lung disease, leading to limited treatment options.
  • Research shows that EMC3 is crucial for maintaining surfactant balance in alveolar type 2 cells and influences the metabolism of the SFTPCI73T mutation.
  • Findings indicate that deleting Emc3 can improve lung structure and function in mice with the SFTPCI73T mutation, revealing new therapeutic targets, particularly involving Valosin Containing Protein (VCP) for treatment.
View Article and Find Full Text PDF

As key components of innate immunity, lung antimicrobial proteins play a critical role in warding off invading respiratory pathogens. Lung surfactant protein A (SP-A) exerts synergistic antimicrobial activity with the -terminal segment of the SP-B proprotein (SP-B) against K2 in vivo. However, the factors that govern SP-A/SP-B antimicrobial activity are still unclear.

View Article and Find Full Text PDF

Structural remodeling in lung disease is progressive and heterogeneous, making temporally and spatially explicit information necessary to understand disease initiation and progression. While mouse models are essential to elucidate mechanistic pathways underlying disease, the experimental tools commonly available to quantify lung disease burden are typically invasive (, histology). This necessitates large cross-sectional studies with terminal endpoints, which increases experimental complexity and expense.

View Article and Find Full Text PDF

Mutations in the gene SFTPC, encoding surfactant protein C (SP-C), are associated with interstitial lung disease in children and adults. To assess the natural history of disease, we knocked in a familial, disease-associated SFTPC mutation, L188Q (L184Q [LQ] in mice), into the mouse Sftpc locus. Translation of the mutant proprotein, proSP-CLQ, exceeded that of proSP-CWT in neonatal alveolar type 2 epithelial cells (AT2 cells) and was associated with transient activation of oxidative stress and apoptosis, leading to impaired expansion of AT2 cells during postnatal alveolarization.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.

View Article and Find Full Text PDF

Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice.

View Article and Find Full Text PDF

High surface tension at the alveolar air-liquid interface is a typical feature of acute and chronic lung injury. However, the manner in which high surface tension contributes to lung injury is not well understood. This study investigated the relationship between abnormal alveolar micromechanics, alveolar epithelial injury, intra-alveolar fluid properties and remodeling in the conditional surfactant protein B (SP-B) knockout mouse model.

View Article and Find Full Text PDF

Proteasomes are a critical component of quality control that regulate turnover of short-lived, unfolded, and misfolded proteins. Proteasome activity has been therapeutically targeted and considered as a treatment option for several chronic lung disorders including pulmonary fibrosis. Although pharmacologic inhibition of proteasome activity effectively prevents the transformation of fibroblasts to myofibroblasts, the effect on alveolar type 2 (AT2) epithelial cells is not clear.

View Article and Find Full Text PDF

Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully created alveolar epithelial type 2 cells (AEC2s) from human pluripotent stem cells (PSCs), a crucial step for studying lung development and diseases.* -
  • They tracked the development of these cells using fluorescent markers and found that the cells could form structures called "alveolospheres" independently in 3D cultures.* -
  • The study also demonstrated gene correction in PSCs from patients with a surfactant mutation, showing potential for modeling diseases and regenerating lung tissue in the future.*
View Article and Find Full Text PDF

Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability.

View Article and Find Full Text PDF

The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N).

View Article and Find Full Text PDF

The surfactant proteins (SPs), SP-B and SP-C, are important components of pulmonary surfactant involved in the reduction of alveolar surface tension. Quantification of SP-B and SP-C in surfactant drugs is informative for their quality control and the evaluation of their biological activity. Western blot analysis enabled the quantification of SP-B, but not SP-C, in surfactant drugs.

View Article and Find Full Text PDF

Allergic asthma is a chronic inflammatory disorder that affects ∼20% of the population worldwide. Microarray analyses of nasal epithelial cells from acute asthmatic patients detected a 50% decrease in expression of Stard7, an intracellular phosphatidylcholine transport protein. To determine whether loss of Stard7 expression promotes allergic responses, mice were generated in which one allele of the Stard7 locus was globally disrupted (Stard7 (+/-) mice).

View Article and Find Full Text PDF

Gas exchange after birth is entirely dependent on the remarkable architecture of the alveolus, its formation and function being mediated by the interactions of numerous cell types whose precise positions and activities are controlled by a diversity of signaling and transcriptional networks. In the later stages of gestation, alveolar epithelial cells lining the peripheral lung saccules produce increasing amounts of surfactant lipids and proteins that are secreted into the airspaces at birth. The lack of lung maturation and the associated lack of pulmonary surfactant in preterm infants causes respiratory distress syndrome, a common cause of morbidity and mortality associated with premature birth.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in physiology and biochemistry have enhanced our understanding of pulmonary surfactant's critical role in respiratory distress syndrome in preterm infants, focusing on the regulation of its proteins and transporters.
  • Identification of genetic mutations affecting surfactant production has been linked to severe lung diseases in neonates and infants, highlighting the importance of maintaining surfactant homeostasis.
  • Research using biophysical and transgenic models has deepened knowledge of pulmonary surfactant's structure and function, shedding light on various lung disorders previously thought to be idiopathic.
View Article and Find Full Text PDF

ERdj4 is a BiP cochaperone regulated by the unfolded protein response to facilitate degradation of unfolded and/or misfolded proteins in the endoplasmic reticulum. As the unfolded protein response plays a critical role in B cell maturation and antibody production, ERdj4 gene trap mice were generated to determine if this chaperone was required for B cell homeostasis. Homozygosity for the trapped allele resulted in hypomorphic expression of ERdj4 in bone marrow cells and abnormal development of hematopoietic lineages in the bone marrow.

View Article and Find Full Text PDF

Autophagy contributes to cellular homeostasis through metabolite recycling and degradation of cytotoxic protein aggregates and damaged organelles. Although recent studies have established that the requirement for basal autophagy is largely tissue specific, the importance of autophagy for alveolar epithelial cell homeostasis remains an important knowledge gap. In the present study we generated two mouse models, with > 90% or > 50% recombination at the Atg5 locus in the distal respiratory epithelium, to assess the effect of dose-dependent decreases in autophagy on alveolar homeostasis.

View Article and Find Full Text PDF

Endoplasmic reticulum-localized DnaJ 4 (ERdj4) is an immunoglobulin-binding protein (BiP) cochaperone and component of the endoplasmic reticulum-associated degradation (ERAD) pathway that functions to remove unfolded/misfolded substrates from the ER lumen under conditions of ER stress. To elucidate the function of ERdj4 in vivo, we disrupted the ERdj4 locus using gene trap (GT) mutagenesis, leading to hypomorphic expression of ERdj4 in mice homozygous for the trapped allele (ERdj4(GT/GT)). Approximately half of ERdj4(GT/GT) mice died perinatally associated with fetal growth restriction, reduced hepatic glycogen stores, and hypoglycemia.

View Article and Find Full Text PDF