To survive, cells must respond to changing environmental conditions. One way that eukaryotic cells react to harsh stimuli is by forming physiological, RNA-seeded subnuclear condensates, termed amyloid bodies (A-bodies). The molecular constituents of A-bodies induced by different stressors vary significantly, suggesting this pathway can tailor the cellular response by selectively aggregating a subset of proteins under a given condition.
View Article and Find Full Text PDFThe formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community.
View Article and Find Full Text PDFHeterogeneous nuclear ribonucleoproteins (hnRNPs) are among the most abundantly expressed RNA binding proteins in the cell and play major roles in all facets of RNA metabolism. hnRNPs are increasingly appreciated as essential for mammalian B cell development by regulating the carefully ordered expression of specific genes. Due to this tight regulation of the hnRNP-RNA network, it is no surprise that a growing number of genes encoding hnRNPs have been causally associated with the onset or progression of many cancers, including B cell neoplasms.
View Article and Find Full Text PDFFront Mol Biosci
September 2022
In recent decades, a growing number of biomolecular condensates have been identified in eukaryotic cells. These structures form through phase separation and have been linked to a diverse array of cellular processes. While a checklist of established membrane-bound organelles is present across the eukaryotic domain, less is known about the conservation of membrane-less subcellular structures.
View Article and Find Full Text PDFIn response to environmental stress, human cells have been shown to form reversible amyloid aggregates within the nucleus, termed amyloid bodies (A-bodies). These protective physiological structures share many of the biophysical characteristics associated with the pathological amyloids found in Alzheimer's and Parkinson's disease. Here, we show that A-bodies are evolutionarily conserved across the eukaryotic domain, with their detection in Drosophila melanogaster and Saccharomyces cerevisiae marking the first examples of these functional amyloids being induced outside of a cultured cell setting.
View Article and Find Full Text PDFBiomolecular condensates concentrate molecules to facilitate basic biochemical processes, including transcription and DNA replication. While liquid-like condensates have been ascribed various functions, solid-like condensates are generally thought of as amorphous sites of protein storage. Here, we show that solid-like amyloid bodies coordinate local nuclear protein synthesis (LNPS) during stress.
View Article and Find Full Text PDFPhysiological amyloid aggregation occurs within the nuclei of stress-treated cells. These structures, termed Amyloid bodies (A-bodies), assemble through the rapid accumulation of proteins into dense membrane-less organelles, which possess the same biophysical properties as plaques observed in many amyloid-based diseases. Here, we demonstrate that A-body proteomic compositions vary significantly between stimuli, as constituent proteins can be sequestered by one or more stressors.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL.
View Article and Find Full Text PDFAmyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity.
View Article and Find Full Text PDFHistorically, amyloids were perceived as toxic/irreversible protein aggregates associated with neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Recent papers are challenging this perception by uncovering widespread cellular roles for physiological amyloidogenesis. These findings suggest that the amyloid-fold should be considered, alongside the native-fold and unfolded configurations, as a physiological and reversible protein organization.
View Article and Find Full Text PDFThe recently identified Luman/CREB3-binding partner LRF (Luman/CREB3 recruitment factor) was shown to localize to discrete sub-nuclear foci. Luman is implicated in herpes simplex virus-1 (HSV-1) latency/reactivation and the unfolded protein response (UPR) pathway; therefore, we sought to characterize the formation of the LRF nuclear foci in the context of cellular signaling and HSV-1 replication. Here, we mapped the nuclear foci-targeting sequence to the central region containing the first leucine zipper (a.
View Article and Find Full Text PDFThe amyloid state of protein organization is typically associated with debilitating human neuropathies and is seldom observed in physiology. Here, we uncover a systemic program that leverages the amyloidogenic propensity of proteins to regulate cell adaptation to stressors. On stimulus, cells assemble the amyloid bodies (A-bodies), nuclear foci containing heterogeneous proteins with amyloid-like biophysical properties.
View Article and Find Full Text PDFProtein concentrations evolve under greater evolutionary constraint than mRNA levels. Translation efficiency of mRNA represents the chief determinant of basal protein concentrations. This raises a fundamental question of how mRNA and protein levels are coordinated in dynamic systems responding to physiological stimuli.
View Article and Find Full Text PDFGenomic studies have revealed that humans possess far fewer protein-encoding genes than originally predicted. These over-estimates were drawn from the inherent developmental and stimuli-responsive complexity found in humans and other mammals, when compared to lower eukaryotic organisms. This left a conceptual void in many cellular networks, as a new class of functional molecules was necessary for "fine-tuning" the basic proteomic machinery.
View Article and Find Full Text PDFEpigenetic regulation of gene expression by DNA methylation plays a central role in the maintenance of cellular homeostasis. Here we present evidence implicating the DNA methylation program in the regulation of hypoxia-inducible factor (HIF) oxygen-sensing machinery and hypoxic cell metabolism. We show that DNA methyltransferase 3a (DNMT3a) methylates and silences the HIF-2α gene (EPAS1) in differentiated cells.
View Article and Find Full Text PDFMammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation.
View Article and Find Full Text PDFThe nucleolus is a plurifunctional organelle in which structure and function are intimately linked. Its structural plasticity has long been appreciated, particularly in response to transcriptional inhibition and other cellular stresses, although the mechanism and physiological relevance of these phenomena are unclear. Using MCF-7 and other mammalian cell lines, we describe a structural and functional adaptation of the nucleolus, triggered by heat shock or physiological acidosis, that depends on the expression of ribosomal intergenic spacer long noncoding RNA (IGS lncRNA).
View Article and Find Full Text PDFThe nucleolus is organized around a scaffolding of rDNA tandem repeats. These repeats, known as ribosomal cassettes, are each composed of ribosomal RNA (rRNA) genes preceding a long intergenic spacer (IGS) that has been classically perceived to be transcriptionally silent. Recent study of the IGS has contradicted the dogma that these spacers are merely inert regions of the genome, instead suggesting they are biologically significant, complex and plurifunctional transcriptional units that appear central to proper cellular functioning.
View Article and Find Full Text PDFMolecular dynamics ensures that proteins and other factors reach their site of action in a timely and efficient manner. This is essential to the formation of molecular complexes, as they require an ever-changing framework of specific interactions to facilitate a model of self-assembly. Therefore, the absence or reduced availability of any key component would significantly impair complex formation and disrupt all downstream molecular networks.
View Article and Find Full Text PDFCellular pathways are established and maintained by stochastic interactions of highly mobile molecules. The nucleolus plays a central role in the regulation of these molecular networks by capturing and immobilizing proteins. Here, we report a function for noncoding RNA (ncRNA) in the regulation of protein dynamics of key cellular factors, including VHL, Hsp70 and MDM2/PML.
View Article and Find Full Text PDFAccumulation of mis- and unfolded proteins during viral replication can cause stress in the endoplasmic reticulum (ER) and trigger the unfolded protein response (UPR). If unchecked, this process may induce cellular changes detrimental to viral replication. In the report, we investigated the impact of HSV-1 on the UPR during lytic replication.
View Article and Find Full Text PDFLuman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER)-bound cellular transcription factor. It has been implicated in the mammalian unfolded protein response (UPR), as well as herpes simplex virus reactivation from latency in sensory neurons. Here, we report the identification of a novel Luman recruitment factor (LRF).
View Article and Find Full Text PDFLuman/CREB3 (also called LZIP) is an endoplasmic reticulum (ER) membrane-bound transcription factor which is believed to undergo regulated intramembrane proteolysis in response to cellular cues. We previously found that Luman activates transcription from the unfolded protein response element. Here we report the identification of Herp, a gene involved in ER stress-associated protein degradation (ERAD), as a direct target of Luman.
View Article and Find Full Text PDF